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Introduction

The Tamarin prover is a powerful tool for the symbolic modeling and analysis of security protocols.
It takes as input a security protocol model, specifying the actions taken by agents running the
protocol in different roles (e.g., the protocol initiator, the responder, and the trusted key server), a
specification of the adversary, and a specification of the protocol’s desired properties. Tamarin can
then be used to automatically construct a proof that, even when arbitrarily many instances of the
protocol’s roles are interleaved in parallel, together with the actions of the adversary, the protocol
fulfils its specified properties. In this manual, we provide an overview of this tool and its use.

Tamarin provides general support for modeling and reasoning about security protocols. Protocols
and adversaries are specified using an expressive language based on multiset rewriting rules. These
rules define a labeled transition system whose state consists of a symbolic representation of the
adversary’s knowledge, the messages on the network, information about freshly generated values,
and the protocol’s state. The adversary and the protocol interact by updating network messages and
generating new messages. Tamarin also supports the equational specification of some cryptographic
operators, such as Diffie-Hellman exponentiation and bilinear pairings. Security properties are
modeled as trace properties, checked against the traces of the transition system, or in terms of the
observational equivalence of two transition systems.

Tamarin provides two ways of constructing proofs. It has an efficient, fully automated mode that
combines deduction and equational reasoning with heuristics to guide proof search. If the tool’s
automated proof search terminates, it returns either a proof of correctness (for an unbounded
number of role instances and fresh values) or a counterexample, representing an attack that violates
the stated property. However, since the correctness of security protocols is an undecidable problem,
the tool may not terminate on a given verification problem. Hence, users may need to resort
to Tamarin’s interactive mode to explore the proof states, inspect attack graphs, and seamlessly
combine manual proof guidance with automated proof search.

A formal treatment of Tamarin’s foundations is given in the theses of (Schmidt 2012) and (Meier
2012). We give just a brief (technical) summary here. For an equational theory E defining cryp-
tographic operators, a multiset rewriting system R defining a protocol, and a formula φ defining
a trace property, Tamarin can either check the validity or the satisfiability of φ for the traces of
R modulo E. As usual, validity checking is reduced to checking the satisfiability of the negated
formula. Here, constraint solving is used to perform an exhaustive, symbolic search for executions
with satisfying traces. The states of the search are constraint systems. For example, a constraint
can express that some multiset rewriting step occurs in an execution or that one step occurs before
another step. We can also directly use formulas as constraints to express that some behavior does
not occur in an execution. Applications of constraint reduction rules, such as simplifications or case
distinctions, correspond to the incremental construction of a satisfying trace. If no further rules can
be applied and no satisfying trace was found, then no satisfying trace exists. For symbolic reason-
ing, we exploit the finite variant property (Comon-Lundh and Delaune 2005) to reduce reasoning
modulo E with respect to R to reasoning modulo AC with respect to the variants of R.

This manual is written for researchers and practitioners who wish to use Tamarin to model and
analyze security protocols. We assume the reader is familiar with basic cryptography and the basic
workings of security protocols. Our focus is on explaining Tamarin’s usage so that a new user can
download, install, and use the system. We do not attempt to describe Tamarin’s formal foundations
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and refer the reader to the related theses and scientific papers for these details.

Highlights

In practice, the Tamarin tool has proven to be highly successful. It features support for trace and
observational equivalence properties, automatic and interactive modes, and has built-in support for
equational theories such as the one modeling Diffie-Hellman Key exchanges. It supports a (limited)
form of induction, and efficiently parallelizes its proof search. It has been applied to numerous
protocols from different domains including:

• Advanced key agreement protocols based on Diffie-Hellman exponentiation, such as verifying
Naxos with respect to the eCK (extended Canetti Krawczyk) model; see (Schmidt et al. 2012).

• The Attack Resilient Public Key Infrastructure (ARPKI) (Basin et al. 2014).
• Transport Layer Security (TLS) (Cremers et al. 2016)
• and many others

Organization and Contents of the Manual

In the next Section Installation we describe how to install Tamarin. First-time users are then
recommended to read Section First Example which describes a simple protocol analysis in detail,
but without technicalities. Then, we systematically build up the technical background a user needs,
by first presenting the cryptographic messages in Section Cryptographic Messages, followed by two
different possible modeling approaches in Sections 5 and 6, covering Protocol Specification using
Rules and Protocol Specification using Processes. Property specification is then covered in Section
Property Specification.

We then continue with information on precomputation in Section Precomputation and possible
modeling issues in Section Modeling Issues. Afterwards, advanced features for experienced users
are described in Section Advanced Features. We have a list of completed case studies in Section
Case Studies. Alternative input toolchains are described in Section Toolchains. Limitations are
described in Section Limitations. We conclude the manual with contact information and further
reading in Contact Information and Further Reading.

License

Tamarin Prover Manual, by The Tamarin Team. Copyright © 2016–2024.

tamarin-prover.com

This written work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. You may reproduce and edit this work with attribution for all non-
commercial purposes.

https://tamarin-prover.com
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References

Installation

Installation on macOS or Linux

The easiest way to install Tamarin on macOS or Linux is to use Homebrew:

• brew install tamarin-prover/tap/tamarin-prover

It’s separately packaged for

• Arch Linux: pacman -S tamarin-prover
• Nixpkgs: nix-env -i tamarin-prover
• NixOS: add tamarin-prover to your environment.systemPackages.

You can also download binaries directly from GitHub and manually install dependencies yourself,
or compile from source.

Installation on Windows 10

You can install Tamarin (with GUI) under Windows 10 using the Windows Subsystem for Linux
(WSL). For performance and compatibility reasons, we recommend using WSL2 with Ubuntu. Once
you have WSL and Ubuntu installed, start the Ubuntu app and install Tamarin following the
installation instructions for Linux above. You can then run Tamarin inside the the Ubuntu app
using the usual command. To use the interactive mode, start Tamarin inside the app and connect
your usual Windows-run browser to http://127.0.0.1:3001. Your Windows files are accessible inside
the Ubuntu app via, e.g., /mnt/c for files on drive C:.

Compiling from source

You don’t need to compile Tamarin from source unless you are developing a new feature for it or
you want to use an unreleased feature. However, if you do want to install it from source:

Manually install dependencies

Tamarin requires Haskell Stack to build and GraphViz and Maude (2.7.1 or newer) to run. The
easiest way to install these is

brew install tamarin-prover/tap/maude graphviz haskell-stack

Alternatively, you can install them yourself:

http://brew.sh/
https://github.com/tamarin-prover/tamarin-prover/releases
https://docs.microsoft.com/windows/wsl/install-win10
https://docs.microsoft.com/windows/wsl/install-win10
http://127.0.0.1:3001
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• Haskell Stack Follow the instructions given at Stack’s install page. If you are installing stack
with your package manager (particularly on Ubuntu), you must run stack upgrade
afterwards, as that version of stack is usually out-of-date.

• Graphviz Graphviz should be available using your standard package manager, or directly
from http://www.graphviz.org/

• Maude You can install Maude using your package manager (make sure to have ver-
sion 2.7.1. or newer). You can also install Maude manually from the [Maude website]
(http://maude.cs.illinois.edu/w/index.php/Maude_download_and_installation). In this
case, you should ensure that your PATH includes the install path, so that calling maude
runs the right version. Note that even though the Maude executable is movable, the
prelude.maude file must be in the same folder that you start Maude from.

Compile

Check out the source code with

git clone https://github.com/tamarin-prover/tamarin-prover.git

and you have the current development version ready for compilation. If you would prefer to use
the master version, just run git checkout master.

In either case, you can then run make default in the new directory, which will install an ap-
propriate GHC (the Glasgow Haskell Compiler) for your system, including all dependencies. The
tamarin-prover executable will be copied to ~/.local/bin/tamarin-prover. Note that this pro-
cess will take between 30 and 60 minutes, as all dependencies (roughly 120) are compiled from
scratch. If you later pull a newer version of Tamarin (or switch to/from the master branch), then
only the tool itself needs to be recompiled, which takes a few minutes, at most.

Running Tamarin on a remote machine

If you have access to a faster desktop or server, but prefer using Tamarin on your laptop, you can
do that. The cpu/memory intensive reasoning part of the tool will then run on the faster machine,
while you just run the GUI locally, i.e., the web browser of your choice. To do this, you forward
your port 3001 to the port 3001 of your server with the following command, replacing SERVERNAME
appropriately.

ssh -L 3001:localhost:3001 SERVERNAME

If you do this, we recommend that you run your Tamarin instance on the server in a screen envi-
ronment, which will continue running even if the network drops your connection as you can later
reconnect to it. Otherwise, any network failure may require you to restart Tamarin and start over
on the proof.

https://github.com/commercialhaskell/stack/blob/master/doc/install_and_upgrade.md
http://www.graphviz.org/
https://www.gnu.org/software/screen/manual/screen.html
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Tamarin Code Editors

VSCode

Tamarin has an official plugin for Visual Studio Code providing syntax highlighting, detection of
syntax errors, and numerous wellformedness checks. It is available from the VSCode marketplace
or from Open VSX. Its source code can be found in vscode-tamarin repository.

Other editors

Under the etc folder contained in the Tamarin Prover project, plug-ins are available for VIM,
Sublime Text 3, Emacs and Notepad++. Below we details the steps required to install your
preferred plug-in.

VIM

Using Vim plugin managers This example will use Vundle to install the plugin directly from
this repository. The instructions below should be translatable to other plugin managers.

1. Make sure you installed Vundle (or your favorite plugin manager)
2. Put the below, or equivalent instructions, into your .vimrc:

Plugin 'tamarin-prover/editors'

3. Restart Vim or reload the configuration
4. Run the Vim command :PluginInstall (or equivalent)

You can install updates through :PluginUpdate.

Manual installation (not recommended) If you install the Vim support files using this
method, you will need to keep the files up-to-date yourself.

1. Create ~/.vim/ directory if not already existing, which is the typical location for $VIMRUNTIME
2. Copy the contents of etc/vim to ~/.vim/, including the folders.

Sublime Text 3

editor-sublime is a plug-in developed for the Sublime Text 3 editor. The plug-in has the following
functionality: - Basic Syntaxes - Snippets for Theories, Rules, Restrictions and Lemmas

editor-sublime can be install in two ways:

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=tamarin-prover.tamarin-prover
https://open-vsx.org/extension/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/vscode-tamarin
https://github.com/tamarin-prover/tamarin-prover/tree/develop/etc
https://github.com/VundleVim/Vundle.vim
https://github.com/tamarin-prover/editor-sublime
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The first and preferred method is with PackageControl.io. editor-sublime can now be installed via
the sublime package manager. See the install and usage documentation, then search and install
TamarinProver.

Alternatively it can be installed from source. For Linux / macOS this process can be followed. We
assume you have the git tool installed.

1. Change Directory to Sublime Text packages directory:

• macOS: cd ~/Library/Application\ Support/Sublime\ Text\ 3/Packages/
• Linux: cd ~/.config/sublime-text-3/Packages/

2. Clone the directory into the Packages folder.

• SSH: git clone git@github.com:tamarin-prover/editor-sublime.git
• HTTPS: git clone https://github.com/tamarin-prover/editor-sublime.git

3. Close and re-open Sublime, and in the bottom right list of syntaxes ‘Tamarin’ should now be
in the list.

Please be aware that this plugin is under active development and as such, several of the features are
still implemented in a prototypical manner. If you experience any problems or have any questions
on running any parts of the plug-in please visit the project GitHub page.

Notepad++

Follow steps from the Notepad++ Wiki using the notepad_plus_plus_spthy.xml file.

Emacs

The spthy.el implements a SPTHY major mode. You can load it with M-x load-file, or add it to
your .emacs in your favourite way.

Atom

The language-tamarin package provides Tamarin syntax highlighting for Atom. To install it, run
apm install language-tamarin.

FAQ

How do I uninstall Tamarin using Homebrew? To uninstall (and “untap” the Tamarin
homebrew tap):

• brew uninstall tamarin-prover
• brew untap tamarin-prover/tap

https://packagecontrol.io/
https://packagecontrol.io/installation
https://packagecontrol.io/docs/usage
https://github.com/tamarin-prover/editor-sublime
http://docs.notepad-plus-plus.org/index.php/User_Defined_Language_Files#How_to_install_user_defined_language_files
https://github.com/tamarin-prover/tamarin-prover/blob/develop/etc/notepad_plus_plus_spthy.xml
https://github.com/tamarin-prover/tamarin-prover/blob/develop/etc/spthy-mode.el
https://atom.io/packages/language-tamarin
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What’s with this homebrew-science tap? Tamarin was previously distributed in the now-
closed homebrew-science tap. If you have already installed it through Homebrew, you may have
to uninstall and untap that version first:

• brew uninstall tamarin-prover
• brew untap homebrew/science

After an update/pull/release Tamarin does not compile any more. Try running stack
upgrade and stack update. An out-of-date stack version can cause spurious compilation errors.

Initial Example

We will start with a simple example of a protocol that consists of just two messages, written here
in so-called Alice-and-Bob notation:

C -> S: aenc(k, pkS)
C <- S: h(k)

In this protocol, a client C generates a fresh symmetric key k, encrypts it with the public key pkS
of a server S (aenc stands for asymmetric encryption), and sends it to S. The server confirms the
key’s receipt by sending the hash of the key back to the client.

This simple protocol is artificial and satisfies only very weak security guarantees. We will use it to
illustrate the general Tamarin workflow by proving that, from the client’s perspective, the freshly
generated key is secret provided that the server is not compromised. By default, the adversary
is a Dolev-Yao adversary that controls the network and can delete, inject, modify and intercept
messages on the network.

The protocol’s Tamarin model and its security properties are given in the file FirstExample.spthy
(.spthy stands for security protocol theory), which can be found in the folder code within the github
repository of this tutorial (https://github.com/tamarin-prover/manual). The Tamarin file starts
with theory followed by the theory’s name, here FirstExample.

theory FirstExample
begin

After the keyword begin, we first declare the cryptographic primitives the protocol uses. Afterward,
we declare multiset rewriting rules that model the protocol, and finally we write the properties to be
proven (called lemmas within the Tamarin framework), which specify the protocol’s desired security
properties. Note that we have also inserted comments to structure the theory.

We next explain in detail the protocol model.

../code/FirstExample.spthy
https://github.com/tamarin-prover/manual
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Cryptographic primitives

We are working in a symbolic model of security protocols. This means that we model messages as
terms, built from functions that satisfy an underlying equational theory describing their properties.
This will be explained in detail in the part on Cryptographic Messages.

In this example, we use Tamarin’s built-in functions for hashing and asymmetric-encryption, de-
clared in the following line:

builtins: hashing, asymmetric-encryption

These built-ins give us

• a unary function h, denoting a cryptographic hash function
• a binary function aenc denoting the asymmetric encryption algorithm,
• a binary function adec denoting the asymmetric decryption algorithm, and
• a unary function pk denoting the public key corresponding to a private key.

Moreover the built-in also specifies that the decryption of the ciphertext using the correct private
key returns the initial plaintext, i.e., adec(aenc(m, pk(sk)), sk) is reduced to m.

Modeling a Public Key Infrastructure

In Tamarin, the protocol and its environment are modeled using multiset rewriting rules. The rules
operate on the system’s state, which is expressed as a multiset (i.e., a bag) of facts. Facts can
be seen as predicates storing state information. For example, the fact Out(h(k)) models that the
protocol sent out the message h(k) on the public channel, and the fact In(x) models that the
protocol receives the message x on the public channel. 1

The example starts with the model of a public key infrastructure (PKI). Again, we use facts to store
information about the state given by their arguments. The rules have a premise and a conclusion,
separated by the arrow symbol -->. Executing the rule requires that all facts in the premise are
present in the current state and, as a result of the execution, the facts in the conclusion will be
added to the state, while the premises are removed. Now consider the first rule, modeling the
registration of a public key:

rule Register_pk:
[ Fr(~ltk) ]

-->
[ !Ltk($A, ~ltk), !Pk($A, pk(~ltk)) ]

1When using the default Tamarin setup, there is only one public channel modeling the network controlled by the
adversary, i.e., the adversary receives all messages from the Out( ) facts, and generates the protocol’s inputs in the
In( ) facts. Private channels can be added if required, see Channel Models for details.
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Here the only premise is an instance of the Fr fact. The Fr fact is a built-in fact that denotes a
freshly generated name. This mechanism is used to model random numbers such as nonces or keys
(see Model Specification for details).

In Tamarin, the sort of a variable is expressed using prefixes:

• ~x denotes x:fresh
• $x denotes x:pub
• %x denotes x:nat
• #i denotes i:temporal
• m denotes m:msg

Moreover, a string constant 'c' denotes a public name in pub, which is a fixed, global constant.
We have a top sort msg and three incomparable subsorts fresh, pub and nat of that top sort.
Timepoint variables of sort temporal are unconnected.

The above rule can therefore be read as follows. First, generate a fresh name ~ltk (of sort fresh),
which is the new private key, and non-deterministically choose a public name A, for the agent
for whom we are generating the key-pair. Afterward, generate the fact !Ltk($A, ~ltk) (the
exclamation mark ! denotes that the fact is persistent, i.e., it can be consumed arbitrarily often),
which denotes the association between agent A and its private key ~ltk, and generate the fact
!Pk($A, pk(~ltk)), which associates agent A and its public key pk(~ltk).

In the example, we allow the adversary to retrieve any public key using the following rule. Essen-
tially, it reads a public-key database entry and sends the public key to the network using the built-in
fact Out, which denotes sending a message to the network (see the section on Model Specification
for more information).

rule Get_pk:
[ !Pk(A, pubkey) ]

-->
[ Out(pubkey) ]

We model the dynamic compromise of long-term private keys using the following rule. Intuitively,
it reads a private-key database entry and sends it to the adversary. This rule has an observable
LtkReveal action stating that the long-term key of agent A was compromised. Action facts are just
like facts, but unlike the other facts do not appear in state, but only on the trace. The security
properties are specified on the traces, and the action LtkReveal is used below to determine which
agents are compromised. The rule now has a premise, conclusion, and action facts within the arrow:
--[ ACTIONFACT ]->:

rule Reveal_ltk:
[ !Ltk(A, ltk) ]

--[ LtkReveal(A) ]->
[ Out(ltk) ]
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Modeling the protocol

Recall the Alice-and-Bob notation of the protocol we want to model:

C -> S: aenc(k, pkS)
C <- S: h(k)

We model it using the following three rules.

// Start a new thread executing the client role, choosing the server
// non-deterministically.
rule Client_1:

[ Fr(~k) // choose fresh key
, !Pk($S, pkS) // lookup public-key of server
]

-->
[ Client_1( $S, ~k ) // Store server and key for next step of thread
, Out( aenc(~k, pkS) ) // Send the encrypted session key to the server
]

rule Client_2:
[ Client_1(S, k) // Retrieve server and session key from previous step
, In( h(k) ) // Receive hashed session key from network
]

--[ SessKeyC( S, k ) ]-> // State that the session key 'k'
[] // was setup with server 'S'

// A server thread answering in one-step to a session-key setup request from
// some client.
rule Serv_1:

[ !Ltk($S, ~ltkS) // lookup the private-key
, In( request ) // receive a request
]

--[ AnswerRequest($S, adec(request, ~ltkS)) ]-> // Explanation below
[ Out( h(adec(request, ~ltkS)) ) ] // Return the hash of the

// decrypted request.

Here, the first rule models the client sending its message, while the second rule models it receiving
a response. The third rule models the server, both receiving the message and responding in one
single rule.

Several explanations are in order. First, Tamarin uses C-style comments, so everything between /*
and */ or the line following // is a comment. Second, we log the session-key setup requests received
by servers using an action to allow the formalization of the authentication property for the client
later.
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Modeling security properties

Security properties are defined over traces of the action facts of a protocol execution.
We have two properties that we would like to evaluate. In the Tamarin framework, properties to
be evaluated are denoted by lemmas. The first of these is on the secrecy of the session key from the
client point of view. The lemma Client_session_key_secrecy says that it cannot be that a client
has set up a session key k with a server S and the adversary learned that k unless the adversary
performed a long-term key reveal on the server S. The second lemma Client_auth specifies client
authentication. This is the statement that, for all session keys k that the clients have setup with
a server S, there must be a server that has answered the request or the adversary has previously
performed a long-term key reveal on S.

lemma Client_session_key_secrecy:
" /* It cannot be that a */

not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

lemma Client_auth:
" /* For all session keys 'k' setup by clients with a server 'S' */
( All S k #i. SessKeyC(S, k) @ #i

==>
/* there is a server that answered the request */

( (Ex #a. AnswerRequest(S, k) @ a)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

Note that we can also strengthen the authentication property to a version of injective authentication.
Our formulation is stronger than the standard formulation of injective authentication as it is based
on uniqueness instead of counting. For most protocols that guarantee injective authentication, one
can also prove such a uniqueness claim, as they agree on appropriate fresh data. This is shown in
lemma Client_auth_injective.

lemma Client_auth_injective:
" /* For all session keys 'k' setup by clients with a server 'S' */
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( All S k #i. SessKeyC(S, k) @ #i
==>
/* there is a server that answered the request */

( (Ex #a. AnswerRequest(S, k) @ a
/* and there is no other client that had the same request */
& (All #j. SessKeyC(S, k) @ #j ==> #i = #j)

)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

To ensure that our lemmas do not just hold vacuously because the model is not executable,
we also include an executability lemma that shows that the model can run to completion.
This is given as a regular lemma, but with the exists-trace keyword, as seen in the lemma
Client_session_key_honest_setup below. This keyword says that the lemma is true if there
exists a trace on which the formula holds; this is in contrast to the previous lemmas where we
required the formula to hold on all traces. When modeling protocols, such existence proofs are
useful sanity checks.

lemma Client_session_key_honest_setup:
exists-trace
" Ex S k #i.

SessKeyC(S, k) @ #i
& not(Ex #r. LtkReveal(S) @ r)

"

Graphical User Interface

How do you now prove that your lemmas are correct? If you execute the command line

tamarin-prover interactive FirstExample.spthy

you will then see the following output on the command line:

GraphViz tool: 'dot'
checking version: dot - graphviz version 2.39.20150613.2112 (20150613.2112). OK.

maude tool: 'maude'
checking version: 2.7. OK.
checking installation: OK.

The server is starting up on port 3001.
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Browse to http://127.0.0.1:3001 once the server is ready.

Loading the security protocol theories './*.spthy' ...
Finished loading theories ... server ready at

http://127.0.0.1:3001

21/Jun/2016:09:16:01 +0200 [Info#yesod-core] Application launched @(yesod_83PxojfItaB8w9Rj9nFdZm:Yesod.Core.Dispatch ./Yesod/Core/Dispatch.hs:157:11)

At this point, if there were any syntax or wellformedness errors (for example if the same fact is
used with different arities an error would be displayed) they would be displayed. See the part on
Modeling Issues for details on how to deal with such errors.
However, there are no such errors in our example, and thus the above command will start a web-
server that loads all security protocol theories in the same directory as FirstExample.spthy. Point
your browser to
http://localhost:3001
and you will see the following welcome screen:

The table in the middle shows all loaded theories. You can either click on a theory to explore it and
prove your security properties, or upload further theories using the upload form at the bottom. Do

http://localhost:3001
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note that no warnings will be displayed if you use the GUI in such a manner to load further theories,
so we do recommend starting Tamarin from the command line in the appropriate directory.

If you click on the ‘FirstExample’ entry in the table of loaded theories, you should see the following:

On the left hand side, you see the theory: links to the message theory describing the adversary, the
multiset rewrite rules and restrictions describing your protocol, and the raw and refined sources,
followed by the lemmas you want to prove. We will explain each of these in the following.

On the right hand side, you have a quick summary of the available commands and keyboard short-
cuts you can use to navigate inside the theory. In the top right corner there are some links: Index
leads back to the welcome page, Download allows you to download the current theory (including
partial proofs if they exist), Actions and the sub-bullet Show source shows the theory’s source
code, and Options allows you to configure the level of details in the graph visualization (see below
for examples).

If you click on Message theory on the left, you should see the following:
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On the right side, you can now see the message theory, starting with the so-called Signature, which
consists of all the functions and equations. These can be either user-defined or imported using the
built-ins, as in our example. Note that Tamarin automatically adds a function pair to create pairs,
and the functions fst and snd together with two equations to access the first and second parts of a
pair. There is a shorthand for the pair using < and >, which is used here for example for fst(<x.1,
x.2>).

Just below come the Construction rules. These rules describe the functions that the adversary can
apply. Consider, for example, the following rule:

rule (modulo AC) ch:
[ !KU( x ) ] --[ !KU( h(x) ) ]-> [ !KU( h(x) ) ]

Intuitively, this rule expresses that if the adversary knows x (represented by the fact !KU(x) in the
premise), then he can compute h(x) (represented by the fact !KU(h(x)) in the conclusion), i.e.,
the hash of x. The action fact !KU(h(x)) in the label also records this for reasoning purposes.

Finally, there are the Deconstruction rules. These rules describe which terms the adversary can
extract from larger terms by applying functions. Consider for example the following rule:

rule (modulo AC) dfst:
[ !KD( <x.1, x.2> ) ] --> [ !KD( x.1 ) ]

In a nutshell, this rule says that if the adversary knows the pair <x.1, x.2> (represented by the
fact !KD( <x.1, x.2> )), then he can extract the first value x.1 (represented by the fact !KD(
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x.1 )) from it. This results from applying fst to the pair and then using the equation fst(<x.1,
x.2>) = x.1. The precise difference between !KD( ) and !KU( ) facts is not important for now,
and will be explained below. As a first approximation, both represent the adversary’s knowledge
and the distinction is only used to make the tool’s reasoning more efficient.

Now click on Multiset rewriting rules on the left.

On the right side of the screen are the protocol’s rewriting rules, plus two additional rules: isend
and irecv2. These two extra rules provide an interface between the protocol’s output and input
and the adversary deduction. The rule isend takes a fact !KU(x), i.e., a value x that the adversary
knows, and passes it to a protocol input In(x). The rule irecv takes a protocol output Out(x) and
passes it to the adversary knowledge, represented by the !KD(x) fact. Note that the rule Serv_1
from the protocol has two variants (modulo AC). The precise meaning of this is unimportant right
now (it stems from the way Tamarin deals with equations) and will be explained in the section on
cryptographic messages.

Now click on Refined sources (10 cases, deconstructions complete) to see the following:

2The ‘i’ historically stems from “intruder”, but here we use “adversary”.
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To improve the efficiency of its internal reasoning, Tamarin precomputes case distinctions. A case
distinction gives all possible sources for a fact, i.e., all rules (or combinations of rules) that produce
this fact, and can then be used during Tamarin’s backward search. These case distinctions are
used to avoid repeatedly computing the same things. On the right hand side is the result of the
precomputations for our FirstExample theory.

For example, here Tamarin tells us that there is one possible source of the fact !Ltk( t.1, t.2 ),
namely the rule Register_pk. The image shows the (incomplete) graph representing the execution.
The green box symbolizes the instance of the Register_pk rule, and the trapezoid on the bottom
stands for the “sink” of the !Ltk( t.1, t.2 ) fact. Here the case distinction consists of only one
rule instance, but there can be potentially multiple rule instances, and multiple cases inside the
case distinction, as in the following images.

The technical information given below the image is unimportant for now, it provides details about
how the case distinction was computed and if there are other constraints such as equations or
substitutions that still must be resolved.
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Here the fact !KU( ~t.1 ) has three sources, the first one is the rule Reveal_ltk, which requires
an instance of the rule Register_pk to create the necessary !Ltk fact. The other two sources are
given below.
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Now we will see how to prove lemmas in the interactive mode. For that, click on sorry (indicating
that the proof has not been started) after the first lemma in the left frame to obtain the following
screen:

Tamarin proves lemmas using constraint solving. Namely, it refines the knowledge it has about the
property and the protocol (called a constraint system) until it can either conclude that the property
holds in all possible cases, or until it finds a counterexample to the lemma.

On the right, we now have the possible proof steps at the top, and the current state of the constraint
system just below (which is empty, as we have not started the proof yet). A proof always starts with
either a simplification step (1. simplify), which translates the lemma into an initial constraint
system that needs to be resolved, or an induction setup step (2. induction), which generates the
necessary constraints to prove the lemma using induction on the length of the trace. Here we use
the default strategy, i.e., a simplification step by clicking on 1. simplify, to obtain the following
screen:
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Tamarin has now translated the lemma into a constraint system. Since Tamarin looks for coun-
terexamples to the lemma, it looks for a protocol execution that contains a SessKeyC( S, k ) and
a K( k ) action, but does not use an LtkReveal( S ). This is visualized in the graph as follows.
The only way of getting a SessKeyC( S, k ) action is using an instance of the Client_2 rule on
the left, and the K( k ) rule is symbolized on the right using a round box (adversary reasoning is
always visualized using round boxes). Just below the graph, the formula

formulas: � #r. (LtkReveal( S ) @ #r) � �

now states that any occurrence of LtkReveal( S ) will lead to a contradiction.

To finish the proof, we can either continue manually by selecting the constraint to resolve next, or
by calling the autoprove command, which selects the next steps based on a heuristic. Here we
have two constraints to resolve: Client_1( S, k ) and KU( k ), both of which are premises for
the rules in the unfinished current constraint system.

Note that the proof methods in the GUI are sorted according to the same heuristic as is used by the
autoprove command. Any proof found by always selecting the first proof method will be identical
to the one constructed by the autoprove command. However, because the general problem is
undecidable, the algorithm may not terminate for every protocol and property.

In this example, both by clicking multiple times on the first constraint or by using the autoprover,
we end with the following final state, where the constructed graph leads to a contradiction as it
contains LtkReveal( S ):
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The lemma is now colored in green as it was successfully proven. If we had found a counterexample,
it would be colored in red. You can prove the other lemmas in the same way.
As you may have noticed, there can be lots of different types of arrows, which additionally can be
colored differently.
There are normal (solid) arrows (in black or gray), which are used to represent the origins of protocol
facts (for linear or persistent facts). There are also solid red orange arrows, which represent steps
where the adversary extracts values from a message he received.
Then there dashed arrows, representing ordering constraints between two actions, and their colors
indicate the reasons for the constraint :

• Black dashed arrows represent an ordering constraint stemming from formulas, for example
from the current lemma or a restriction.

• Dark blue indicates an ordering constraint deduced from a fresh value: since fresh values are
unique, all rule instances using a fresh value must appear after the instance that created the
value.

• Red dashed arrows are used to represent steps where the adversary composes values.
• Dark orange represents an ordering constraint implied by Tamarin’s normal form conditions.
• Purple denotes an ordering constraint originating from an injective fact instance, see injective-

instances .

Dashed edges can be colored with multiple colors at a time, which means that there are several
ordering constraints at the same time.
For example, a black and blue dashed arrow indicates that there are two constraints: one deduced
from a formula, and one deduced from a fresh value appearing in the rule instances.
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Finally, in intermediate proof steps, there can also be dotted green arrows, which are used during
Tamarin’s proof search to represent incomplete adversary deduction steps.

Note that by default Tamarin does not show all rules and arrows to simplify the graphs, but this
can be adjusted using the Options button on the top right of the page.

Another option is whether to render abbreviations in the graph as shown in the picture below.
When abbreviations are enabled Tamarin will construct abbreviations for terms, list them in a
legend at the bottom of the image and replace the original terms in the graph. A maximum on
10 abbreviations are generated and terms are prioritized based on their length and how often they
appear in the graph. Note that abbreviations can appear in other abbreviations, as for example
“PK1” appears in the expanded term of “AE1” below. The legend is sorted so that it can be read
top to bottom.

Running Tamarin on the Command Line

The call

tamarin-prover FirstExample.spthy
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parses the FirstExample.spthy file, checks its wellformedness, and pretty-prints the theory. The
declaration of the signature and the equations can be found at the top of the pretty-printed theory.

Proving all lemmas contained in the theory using the automatic prover is as simple as adding the
flag --prove to the call; i.e.,

tamarin-prover FirstExample.spthy --prove

This will first output some logging from the constraint solver and then the FirstExample security
protocol theory with the lemmas and their attached (dis)proofs:

summary of summaries:

analyzed: FirstExample.spthy

Client_session_key_secrecy (all-traces): verified (5 steps)
Client_auth (all-traces): verified (11 steps)
Client_auth_injective (all-traces): verified (15 steps)
Client_session_key_honest_setup (exists-trace): verified (5 steps)

It is possible to select lemmas by having multiple --prove flags and by specifying a common prefix
followed by a wildcard, e.g., --prove=Client_auth*. Note: In most shells, the * needs to be
escaped to \*.

Quit on Warning

As referred to in “Graphical User Interface”, in larger models, one can miss wellformedness errors
(when writing the Tamarin file, and when running the tamarin-prover): in many cases, the web-
server starts up correctly, making it harder to notice that something’s not right either in a rule or
lemma.

To ensure that your provided .spthy file is free of any errors or warnings (and to halt pre-processing
and other computation in the case of errors), it can be a good idea to use the --quit-on-warning
flag at the command line. E.g.,

tamarin-prover interactive FirstExample.spthy --quit-on-warning

This will stop Tamarin’s computations from progressing any further, and leave the error or warning
causing Tamarin to stop on the terminal.

Complete Example

Here is the complete input file:
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/*
Initial Example for the Tamarin Manual
======================================

Authors: Simon Meier, Benedikt Schmidt
Updated by: Jannik Dreier, Ralf Sasse
Date: June 2016

This file is documented in the Tamarin user manual.

*/

theory FirstExample
begin

builtins: hashing, asymmetric-encryption

// Registering a public key
rule Register_pk:

[ Fr(~ltk) ]
-->

[ !Ltk($A, ~ltk), !Pk($A, pk(~ltk)) ]

rule Get_pk:
[ !Pk(A, pubkey) ]

-->
[ Out(pubkey) ]

rule Reveal_ltk:
[ !Ltk(A, ltk) ]

--[ LtkReveal(A) ]->
[ Out(ltk) ]

// Start a new thread executing the client role, choosing the server
// non-deterministically.
rule Client_1:

[ Fr(~k) // choose fresh key
, !Pk($S, pkS) // lookup public-key of server
]

-->
[ Client_1( $S, ~k ) // Store server and key for next step of thread
, Out( aenc(~k, pkS) ) // Send the encrypted session key to the server
]

rule Client_2:
[ Client_1(S, k) // Retrieve server and session key from previous step
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, In( h(k) ) // Receive hashed session key from network
]

--[ SessKeyC( S, k ) ]-> // State that the session key 'k'
[] // was setup with server 'S'

// A server thread answering in one-step to a session-key setup request from
// some client.
rule Serv_1:

[ !Ltk($S, ~ltkS) // lookup the private-key
, In( request ) // receive a request
]

--[ AnswerRequest($S, adec(request, ~ltkS)) ]-> // Explanation below
[ Out( h(adec(request, ~ltkS)) ) ] // Return the hash of the

// decrypted request.

lemma Client_session_key_secrecy:
" /* It cannot be that a */

not(
Ex S k #i #j.
/* client has set up a session key 'k' with a server'S' */
SessKeyC(S, k) @ #i
/* and the adversary knows 'k' */

& K(k) @ #j
/* without having performed a long-term key reveal on 'S'. */

& not(Ex #r. LtkReveal(S) @ r)
)

"

lemma Client_auth:
" /* For all session keys 'k' setup by clients with a server 'S' */
( All S k #i. SessKeyC(S, k) @ #i

==>
/* there is a server that answered the request */

( (Ex #a. AnswerRequest(S, k) @ a)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

lemma Client_auth_injective:
" /* For all session keys 'k' setup by clients with a server 'S' */
( All S k #i. SessKeyC(S, k) @ #i

==>
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/* there is a server that answered the request */
( (Ex #a. AnswerRequest(S, k) @ a

/* and there is no other client that had the same request */
& (All #j. SessKeyC(S, k) @ #j ==> #i = #j)

)
/* or the adversary performed a long-term key reveal on 'S'

before the key was setup. */
| (Ex #r. LtkReveal(S) @ r & r < i)
)

)
"

lemma Client_session_key_honest_setup:
exists-trace
" Ex S k #i.

SessKeyC(S, k) @ #i
& not(Ex #r. LtkReveal(S) @ r)

"

end

Cryptographic Messages

Tamarin analyzes protocols with respect to a symbolic model of cryptography. This means crypto-
graphic messages are modeled as terms rather than bit strings.
The properties of the employed cryptographic algorithms are modeled by equations. More con-
cretely, a cryptographic message is either a constant c or a message f(m1,...,mn) corresponding
to the application of the n-ary function symbol f to n cryptographic messages m1, …, mn. When
specifying equations, we also allow for variables in addition to constants.

Constants

We distinguish between these types of constants:

• Public constants model publicly known atomic messages such as agent identities and labels.
We use the notation 'ident' to denote public constants in Tamarin. Such constants are
of sort pub and can hence be unified with public variables. They are always known by the
adversary.

• Functions of arity 0 (see below). A function is always of sort msg, and hence cannot be unified
with a public variable. By default the function is public and known by the adversary. If the
function is declared private, it is not known by the adversary. However, fresh values are
usually a more appropriate modeling of secret values.

• Natural Numbers have only one constant which is written %1 or 1:nat and models the number
one.
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Function Symbols

Tamarin supports a fixed set of built-in function symbols and additional user-defined function
symbols. The only function symbols available in every Tamarin file are for pairing and projection.
The binary function symbol pair models the pair of two messages and the function symbols fst
and snd model the projections of the first and second argument. The properties of projection are
captured by the following equations:

fst(pair(x,y)) = x
snd(pair(x,y)) = y

Tamarin also supports <x,y> as syntactic sugar for pair(x,y) and <x1,x2,...,xn-1,xn> as syn-
tactic sugar for <x1,<x2,..,<xn-1,xn>...>.

Additional built-in function symbols can be activated by including one of the following message the-
ories: hashing, asymmetric-encryption, signing, revealing-signing, symmetric-encryption,
diffie-hellman, bilinear-pairing, xor, and multiset.

To activate message theories t1, …, tn, include the line builtins: t1, ..., tn in your file. The
definitions of the built-in message theories are given in Section Built-in message theories.

To define function symbols f1, …, fn with arity a1,…,an include the following line in your file:

functions: f1/a1, ..., fn/an

Tamarin also supports private function symbols. In contrast to regular function symbols, Tamarin
assumes that private function symbols cannot be applied by the adversary. Private functions can
be used to model functions that implicitly use some secret that is shared between all (honest) users.
To make a function private, simply add the attribute [private] after the function declaration. For
example, the line

functions: f/3, g/2 [private], h/1

defines the private function g and the public functions f and h. We will describe in the next section
how you can define equations that formalize properties of functions.

Equational theories

Equational theories can be used to model properties of functions, e.g., that symmetric decryption
is the inverse of symmetric encryption whenever both use the same key. The syntax for adding
equations to the context is:

equations: lhs1 = rhs1, ..., lhsn = rhsn
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Both lhs and rhs can contain variables, but no public constants, and all variables on the right
hand side must also appear on the left hand side. The symbolic proof search used by Tamarin
supports a certain class of user-defined equations, namely convergent equational theories that have
the finite variant property (Comon-Lundh and Delaune 2005). Note that Tamarin does not check
whether the given equations belong to this class, so writing equations outside this class can cause
non-termination or incorrect results without any warning.

Also note that Tamarin’s reasoning is particularly efficient when considering only subterm-
convergent equations, i.e., if the right-hand-side is either a ground term (i.e., it does not contain
any variables) or a proper subterm of the left-hand-side. These equations are thus preferred if they
are sufficient to model the required properties. However, for example the equations modeled by the
built-in message theories diffie-hellman, bilinear-pairing, xor, and multiset do not belong
to this restricted class since they include for example associativity and commutativity. All other
built-in message theories can be equivalently defined by using functions: ... and equations:
... and we will see some examples of allowed equations in the next section.

Built-in message theories and other built-in features

In the following, we write f/n to denote that the function symbol f is n-ary.

hashing: This theory models a hash function. It defines the function symbol h/1 and no equations.

asymmetric-encryption: This theory models a public key encryption scheme. It defines the func-
tion symbols aenc/2, adec/2, and pk/1, which are related by the equation adec(aenc(m,
pk(sk)), sk) = m. Note that as described in Syntax Description, aenc{x,y}pkB is syntactic
sugar for aenc(<x,y>, pkB).

signing: This theory models a signature scheme. It defines the function symbols sign/2, verify/3,
pk/1, and true, which are related by the equation verify(sign(m,sk),m,pk(sk)) = true.

revealing-signing: This theory models a message-revealing signature scheme. It defines the
function symbols revealSign/2, revealVerify/3, getMessage/1, pk/1, and true, which
are related by the equations revealVerify(revealSign(m,sk),m,pk(sk)) = true and
getMessage(revealSign(m,sk)) = m.

symmetric-encryption: This theory models a symmetric encryption scheme. It defines the func-
tion symbols senc/2 and sdec/2, which are related by the equation sdec(senc(m,k),k) =
m.

diffie-hellman: This theory models Diffie-Hellman groups. It defines the function symbols inv/1,
1/0, and the symbols ^ and *. We use g ^ a to denote exponentiation in the group and *,
inv and 1 to model the (multiplicative) abelian group of exponents (the integers modulo the
group order). The set of defined equations is:

(x^y)^z = x^(y*z)
x^1 = x
x*y = y*x

016_syntax_description.html
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(x*y)*z = x*(y*z)
x*1 = x
x*inv(x) = 1

bilinear-pairing: This theory models bilinear groups. It extends the diffie-hellman theory
with the function symbols pmult/2 and em/2. Here, pmult(x,p) denotes the multiplication
of the point p by the scalar x and em(p,q) denotes the application of the bilinear map to the
points p and q. The additional equations are:

pmult(x,(pmult(y,p)) = pmult(x*y,p)
pmult(1,p) = p
em(p,q) = em(q,p)
em(pmult(x,p),q) = pmult(x,em(q,p))

xor: This theory models the exclusive-or operation. It adds the function symbols �/2 (also writ-
ten as XOR/2) and zero/0. � is associative and commutative and satisfies the cancellation
equations:

x � y = y � x
(x � y) � z = x � (y � z)
x � zero = x
x � x = zero

multiset: This theory introduces the associative-commutative operator ++ which is usually used
to model multisets3.

natural-numbers: This theory introduces the associative-commutative operator %+ and the public
constant %1 which are used to model counters. It also introduces the sort nat with which
variables can be annotated like the sort pub $: n:nat or %n. Furthermore, the operator %+
only accepts terms of sort nat and is the only one to produce nat terms. This guarantees, that
any term of sort nat is essentially a sum of %1. So all natural numbers are public knowledge
which speeds up Tamarin as no attacker construction of a number has to be searched for.

Note that these nat terms are only suited to model small natural numbers like counters that are
assumed to be guessable by the attacker. To model big random numbers, it is advised to use fresh
variables.
In some protocols such as WPA-2, big natural numbers are increased as a counter with a random
start-point. For such models, it is advised to use a pair <~x, %n> where ~x is the random start
point and %n is the guessable counter.

reliable-channel: This theory introduces support for reliable channel in the process calculus.
Messages on the channel (i.e., public name) 'r' are guaranteed to arrive eventually. There
is only one other channel, the public and unreliable channel 'c'. Note that multiple reliable
channels can be modelled using pattern matchting:

3In earlier versions of Tamarin, this operator was + which is still supported but deprecated. The reason for this
change is that in the end, we want to use + for addition on natural numbers (instead of the current %+).

006_protocol-specification-processes.html
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out('r',<'channelA','Hello')
| out('r',<'channelB','Bonjour')
| in('r',<'channelA',x); event PrepareTea()
| in('r',<'channelB',x); event PrepareCoffee()

Reserved function symbol names

Due to their use in built-in message theories, the following function names cannot be user-defined:
mun, one, exp, mult, inv, pmult, em.
If a theory contains any of these as user-defined function symbol the parser will reject the file,
stating which reserved name was redeclared.

Model Specification using Rules

In this section, we now provide an informal description of the underlying model. The full details of
this model can be found in (Schmidt 2012).
Tamarin models are specified using three main ingredients:

1. Rules
2. Facts
3. Terms

We have already seen the definition of terms in the previous section. Here we will discuss facts and
rules, and illustrate their use with respect to the Naxos protocol, displayed below.

In this protocol, each party x has a long-term private key lkx and a corresponding public key pkx
= 'g'^lkx, where 'g' is a generator of the Diffie-Hellman group. Because 'g' can be public, we
model it as a public constant. Two different hash functions h1 and h2 are used.
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To start a session, the initiator I first creates a fresh nonce eskI, also known as I’s ephemeral
(private) key. He then concatenates eskI with I’s long-term private key lkI, hashes the result
using the hash function h1, and sends 'g'^h1(eskI ,lkI) to the responder. The responder R
stores the received value in a variable X, computes a similar value based on his own nonce eskR and
long-term private key lkR, and sends the result to the initiator, who stores the received value in the
variable Y. Finally, both parties compute a session key (kI and kR, respectively) whose computation
includes their own long-term private keys, such that only the intended partner can compute the
same key.

Note that the messages exchanged are not authenticated as the recipients cannot verify that the
expected long-term key was used in the construction of the message. The authentication is implicit
and only guaranteed through ownership of the correct key. Explicit authentication (e.g., the in-
tended partner was recently alive or agrees on some values) is commonly achieved in authenticated
key exchange protocols by adding a key-confirmation step, where the parties exchange a MAC of
the exchanged messages that is keyed with (a variant of) the computed session key.

Rules

We use multiset rewriting to specify the concurrent execution of the protocol and the adversary.
Multiset rewriting is a formalism that is commonly used to model concurrent systems since it
naturally supports independent transitions.

A multiset rewriting system defines a transition system, where, in our case, the transitions will be
labeled. The system’s state is a multiset (bag) of facts. We will explain the types of facts and their
use below.

A rewrite rule in Tamarin has a name and three parts, each of which is a sequence of facts: one for
the rule’s left-hand side, one labelling the transition (which we call ‘action facts’), and one for the
rule’s right-hand side. For example:

rule MyRule1:
[ ] --[ L('x') ]-> [ F('1','x'), F('2','y') ]

rule MyRule2:
[ F(u,v) ] --[ M(u,v) ]-> [ H(u), G('3',h(v)) ]

For now, we will ignore the action facts (L(...) and M(...)) and return to them when discussing
properties in the next section. If a rule is not labelled by action facts, the arrow notation --[ ]->
can be abbreviated to -->.

The rule names are only used for referencing specific rules. They have no specific meaning and can
be chosen arbitrarily, as long as each rule has a unique name.

Executions

The initial state of the transition system is the empty multiset.



38 CONTENTS

The rules define how the system can make a transition to a new state. A rule can be applied to a
state if it can be instantiated such that its left hand side is contained in the current state. In this
case, the left-hand side facts are removed from the state, and replaced by the instantiated right
hand side.
For example, in the initial state, MyRule1 can be instantiated repeatedly.
For any instantiation of MyRule1, this leads to follow-up state that contains F('1','x') and
F('2','y'). MyRule2 cannot be applied in the initial state since it contains no F facts. In the
successor state, the rule MyRule2 can now be applied twice. It can be instantiated either by u equal
to '1' (with v equal to 'x') or to '2' (with v equal to 'y'). Each of these instantiations leads to
a new successor state.

Using ‘let’ binding in rules for local macros

When modeling more complex protocols, a term may occur multiple times (possibly as a subterm)
within the same rule. To make such specifications more readable, Tamarin offers support for let
... in, as in the following example:

rule MyRuleName:
let foo1 = h(bar)

foo2 = <'bars', foo1>
...
var5 = pk(~x)

in
[ ... ] --[ ... ]-> [ ... ]

Such let-binding expressions can be used to specify local term macros within the context of a rule.
Each macro should occur on a separate line and defines a substitution: the left-hand side of the =
sign must be a variable and the right-hand side is an arbitrary term. The rule will be interpreted
after substituting all variables occurring in the let by their right-hand sides. As the above example
indicates, macros may use the left-hand sides of earlier defined macros.

Global macros

Sometimes we want to use the same let binding(s) in multiples rules. In such a case, we can use
the macros keyword to define global macros, which are applied to all rules. Consider the following
example:

macros: macro1(x) = h(x), macro2(x, y) = <x, y>, ..., macro7() = $A

Here macro1 is the name of the first macro, and x is its the parameter. The second macro is called
macro2 and has two parameters x and y. The last macro macro7 has no parameters. The the term
on the right of the = sign is the output of the macro. It can be any term built from the functions
defined in the equational theory and the parameters of the macro.
To use a macro in a rule, we can use the macro like a function inside terms. For example
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[ In(macro1(~ltk)) ] --[ ... ]-> [ Out(macro2(pkA, pkB)) ]

will become

[ In(h(~ltk)) ] --[ ... ]-> [ Out(<pkA, pkB>) ]

after the above macros have been applied.
A macro can call a second macro, if the second one was defined before. For example, one can define
the following two macros:

macros: innerMacro(x, y) = <x, y>, hashMacro(x, y) = h(innerMacro(x, y))

However, the following snippet would result in an error

macros: hashMacro(x, y) = h(innerMacro(x, y)), innerMacro(x, y) = <x, y>

as innerMacro is not yet defined when hashMacro is defined.
Macros only apply to rules, and are shown in interactive mode together with the protocol rules.
When exporting a theory, Tamarin will export the original rules (before the macros were applied)
and the macros.

Facts

Facts are of the form F(t1,...,tn) for a fact symbol F and terms ti. They have a fixed arity (in
this case n). Note that if a Tamarin model uses the same fact with two different arities, Tamarin
will report an error.
There are three types of special facts built in to Tamarin. These are used to model interaction with
the untrusted network and to model the generation of unique fresh (random) values.

In This fact is used to model a party receiving a message from the untrusted network that is
controlled by a Dolev-Yao adversary, and can only occur on the left-hand side of a rewrite
rule.

Out This fact is used to model a party sending a message to the untrusted network that is controlled
by a Dolev-Yao adversary, and can only occur on the right-hand side of a rewrite rule.

Fr This fact must be used when generating fresh (random) values, and can only occur on the
left-hand side of a rewrite rule, where its argument is the fresh term. Tamarin’s underlying
execution model has a built-in rule for generating instances of Fr(x) facts, and also ensures
that each instance produces a term (instantiating x) that is different from all others.

For the above three facts, Tamarin has built-in rules. In particular, there is a fresh rule that
produces unique Fr(...) facts, and there is a set of rules for adversary knowledge derivation,
which consume Out(...) facts and produce In(...) facts.
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Linear versus persistent facts

The facts mentioned above are called ‘linear facts’. They are not only produced by rules, they also
can be consumed by rules. Hence they might appear in one state but not in the next.

In contrast, some facts in our models will never be removed from the state once they are introduced.
Modeling this using linear facts would require that every rule that has such a fact in the left-hand-
side, also has an exact copy of this fact in the right-hand side. While there is no fundamental
problem with this modeling in theory, it is inconvenient for the user and it also might lead Tamarin
to explore rule instantiations that are irrelevant for tracing such facts in practice, which may even
lead to non-termination.

For the above two reasons, we now introduce ‘persistent facts’, which are never removed from the
state. We denote these facts by prefixing them with a bang (!).

Facts always start with an upper-case letter and need not be declared explicitly. If their name is
prefixed with an exclamation mark !, then they are persistent. Otherwise, they are linear. Note
that every fact name must be used consistently; i.e., it must always be used with the same arity, case,
persistence, and multiplicity. Otherwise, Tamarin complains that the theory is not well-formed.

Comparing linear and persistent fact behaviour we note that if there is a persistent fact in some rule’s
premise, then Tamarin will consider all rules that produce this persistent fact in their conclusion as
the source. Usually though, there are few such rules (most often just a single one), which simplifies
the reasoning. For linear facts, particularly those that are used in many rules (and kept static),
obviously there are many rules with the fact in their conclusion (all of them!). Thus, when looking
for a source in any premise, all such rules need to be considered, which is clearly less efficient
and non-termination-prone as mentioned above. Hence, when trying to model facts that are never
consumed, the use of persistent facts is preferred.

Embedded restrictions

A frequently used trick when modelling protocols is to enforce a restriction on the trace once a
certain rule is invoked, for instance if the step represented by the rule requires another step at some
later point in time, e.g., to model a reliable channel. We explain what restriction are later, but
roughly speaking, they specify constraints that a protocol execution should uphold.

This can be done by hand, namely by specifying a restriction that refers to an action fact unique
to this rule, or by using embedded restrictions like this:

rule B:
[In(x), In(y)] --[ _restrict( formula )]-> []

where formula is a restriction. Note that embedded restrictions currently are only available in
trace mode.



MODEL SPECIFICATION USING RULES 41

Modeling protocols

There are several ways in which the execution of security protocols can be defined, e.g., as in
(Cremers and Mauw 2012). In Tamarin, there is no pre-defined protocol concept and the user is
free to model them as she or he chooses. Below we give an example of how protocols can be modeled
and discuss alternatives afterwards.

Public-key infrastructure

In the Tamarin model, there is no pre-defined notion of public key infrastructure (PKI). A pre-
distributed PKI with asymmetric keys for each party can be modeled by a single rule that generates
a key for a party. The party’s identity and public/private keys are then stored as facts in the state,
enabling protocol rules to retrieve them. For the public key, we commonly use the Pk fact, and for
the corresponding long-term private key we use the Ltk fact. Since these facts will only be used by
other rules to retrieve the keys, but never updated, we model them as persistent facts. We use the
abstract function pk(x) to denote the public key corresponding to the private key x, leading to the
following rule. Note that we also directly give all public keys to the attacker, modeled by the Out
on the right-hand side.

rule Generate_key_pair:
[ Fr(~x) ]
-->
[ !Pk($A,pk(~x))
, Out(pk(~x))
, !Ltk($A,~x)
]

Some protocols, such as Naxos, rely on the algebraic properties of the key pairs. In many DH-based
protocols, the public key is gx for the private key x, which enables exploiting the commutativity of
the exponents to establish keys. In this case, we specify the following rule instead.

rule Generate_DH_key_pair:
[ Fr(~x) ]
-->
[ !Pk($A,'g'^~x)
, Out('g'^~x)
, !Ltk($A,~x)
]

Modeling a protocol step

Protocols describe the behavior of agents in the system. Agents can perform protocol steps, such
as receiving a message and responding by sending a message, or starting a session.
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Modeling the Naxos responder role

We first model the responder role, which is simpler than the initiator role since it can be done in
one rule.

The protocol uses a Diffie-Hellman exponentiation, and two hash functions h1 and h2, which we
must declare. We can model this using:

builtins: diffie-hellman

and

functions: h1/1
functions: h2/1

Without any further equations, a function declared in this fashion will behave as a one-way function.

Each time a responder thread of an agent $R receives a message, it will generate a fresh value ~eskR,
send a response message, and compute a key kR. We can model receiving a message by specifying
an In fact on the left-hand side of a rule. To model the generation of a fresh value, we require it to
be generated by the built-in fresh rule.

Finally, the rule depends on the actor’s long-term private key, which we can obtain from the
persistent fact generated by the Generate_DH_key_pair rule presented previously.

The response message is an exponentiation of g to the power of a computed hash function. Since
the hash function is unary (arity one), if we want to invoke it on the concatenation of two messages,
we model them as a pair <x,y> which will be used as the single argument of h1.

Thus, an initial formalization of this rule might be as follows:

rule NaxosR_attempt1:
[
In(X),
Fr(~eskR),
!Ltk($R, lkR)

]
-->
[
Out( 'g'^h1(< ~eskR, lkR >) )

]

However, the responder also computes a session key kR. Since the session key does not affect the
sent or received messages, we can omit it from the left-hand side and the right-hand side of the rule.
However, later we will want to make a statement about the session key in the security property.
We therefore add the computed key to the actions:
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rule NaxosR_attempt2:
[
In(X),
Fr(~eskR),
!Ltk($R, lkR)

]
--[ SessionKey($R, kR ) ]->
[
Out( 'g'^h1(< ~eskR, lkR >) )

]

The computation of kR is not yet specified in the above. We could replace kR in the above rule by its
full unfolding, but this would decrease readability. Instead, we use let binding to avoid duplication
and reduce possible mismatches. Additionally, for the key computation we need the public key
of the communication partner $I, which we bind to a unique thread identifier ~tid; we use the
resulting action fact to specify security properties, as we will see in the next section. This leads to:

rule NaxosR_attempt3:
let

exR = h1(< ~eskR, lkR >)
hkr = 'g'^exR
kR = h2(< pkI^exR, X^lkR, X^exR, $I, $R >)

in
[

In(X),
Fr( ~eskR ),
Fr( ~tid ),
!Ltk($R, lkR),
!Pk($I, pkI)

]
--[ SessionKey( ~tid, $R, $I, kR ) ]->
[

Out( hkr )
]

The above rule models the responder role accurately, and computes the appropriate key.

We note one further optimization that helps Tamarin’s backwards search. In NaxosR_attempt3, the
rule specifies that lkR might be instantiated with any term, hence also non-fresh terms. However,
since the key generation rule is the only rule that produces Ltk facts, and it will always use a
fresh value for the key, it is clear that in any reachable state of the system, lkR can only become
instantiated by fresh values. We can therefore mark lkR as being of sort fresh, therefore replacing
it by ~lkR.4

4Note that in contrast, replacing X by ~X would change the interpretation of the model, effectively restricting the
instantiations of the rule to those where X is a fresh value.
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rule NaxosR:
let

exR = h1(< ~eskR, ~lkR >)
hkr = 'g'^exR
kR = h2(< pkI^exR, X^~lkR, X^exR, $I, $R >)

in
[

In(X),
Fr( ~eskR ),
Fr( ~tid ),
!Ltk($R, ~lkR),
!Pk($I, pkI)

]
--[ SessionKey( ~tid, $R, $I, kR ) ]->
[

Out( hkr )
]

The above rule suffices to model basic security properties, as we will see later.

Modeling the Naxos initiator role

The initiator role of the Naxos protocol consists of sending a message and waiting for the response.
While the initiator is waiting for a response, other agents might also perform steps. We therefore
model the initiator using two rules.5

The first rule models an agent starting the initiator role, generating a fresh value, and sending
the appropriate message. As before, we use let binding to simplify the presentation and use ~lkI
instead of lkI since we know that !Ltk facts are only produced with a fresh value as the second
argument.

rule NaxosI_1_attempt1:
let exI = h1(<~eskI, ~lkI >)

hkI = 'g'^exI
in
[ Fr( ~eskI ),

!Ltk( $I, ~lkI ) ]
-->
[ Out( hkI ) ]

Using state facts to model progress After triggering the previous rule, an initiator will wait
for the response message. We still need to model the second part, in which the response is received
and the key is computed. To model the second part of the initiator rule, we must be able to specify

5This modeling approach, as with the responder, is similar to the approach taken in cryptographic security models
in the game-based setting, where each rule corresponds to a “query”.
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that it was preceded by the first part and with specific parameters. Intuitively, we must store in
the state of the transition system that there is an initiator thread that has performed the first send
with specific parameters, so it can continue where it left off.
To model this, we introduce a new fact, which we often refer to as a state fact: a fact that indicates
that a certain process or thread is at a specific point in its execution, effectively operating both
as a program counter and as a container for the contents of the memory of the process or thread.
Since there can be any number of initiators in parallel, we need to provide a unique handle for each
of their state facts.
Below we provide an updated version of the initiator’s first rule that produces a state fact Init_1
and introduces a unique thread identifier ~tid for each instance of the rule.

rule NaxosI_1:
let exI = h1(<~eskI, ~lkI >)

hkI = 'g'^exI
in
[ Fr( ~eskI ),

Fr( ~tid ),
!Ltk( $I, ~lkI ) ]

-->
[ Init_1( ~tid, $I, $R, ~lkI, ~eskI ),

Out( hkI ) ]

Note that the state fact has several parameters: the unique thread identifier ~tid6, the agent
identities $I and $R, and the actor’s long-term private key ~lkI, and the private exponent. This
now enables us to specify the second initiator rule.

rule NaxosI_2:
let

exI = h1(< ~eskI, ~lkI >)
kI = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)

in
[ Init_1( ~tid, $I, $R, ~lkI , ~eskI),

!Pk( $R, pkR ),
In( Y ) ]

--[ SessionKey( ~tid, $I, $R, kI ) ]->
[]

This second rule requires receiving a message Y from the network but also that an initiator fact was
previously generated. This rule then consumes this fact, and since there are no further steps in the
protocol, does not need to output a similar fact. As the Init_1 fact is instantiated with the same
parameters, the second step will use the same agent identities and the exponent exI computed in
the first step.
Thus, the complete example becomes:

6Note that we could have re-used ~eskI for this purpose, since it will also be unique for each instance.
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theory Naxos
begin

builtins: diffie-hellman

functions: h1/1
functions: h2/1

rule Generate_DH_key_pair:
[ Fr(~x) ]
-->
[ !Pk($A,'g'^~x)
, Out('g'^~x)
, !Ltk($A,~x)
]

rule NaxosR:
let

exR = h1(< ~eskR, ~lkR >)
hkr = 'g'^exR
kR = h2(< pkI^exR, X^~lkR, X^exR, $I, $R >)

in
[

In(X),
Fr( ~eskR ),
Fr( ~tid ),
!Ltk($R, ~lkR),
!Pk($I, pkI)

]
--[ SessionKey( ~tid, $R, $I, kR ) ]->
[

Out( hkr )
]

rule NaxosI_1:
let exI = h1(<~eskI, ~lkI >)

hkI = 'g'^exI
in
[ Fr( ~eskI ),

Fr( ~tid ),
!Ltk( $I, ~lkI ) ]

-->
[ Init_1( ~tid, $I, $R, ~lkI, ~eskI ),

Out( hkI ) ]

rule NaxosI_2:
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let
exI = h1(< ~eskI, ~lkI >)
kI = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)

in
[ Init_1( ~tid, $I, $R, ~lkI , ~eskI),

!Pk( $R, pkR ),
In( Y ) ]

--[ SessionKey( ~tid, $I, $R, kI ) ]->
[]

end

Note that the protocol description only specifies a model, but not which properties it might satisfy.
We discuss these in the next section.

Clustering by Role

To enhance the clarity of the graph and identify the roles involved, nodes can be grouped into
clusters based on their respective roles. Clusters are purely a matter of display and do not affect
Tamarin’s reasoning. The goal is to make the graph easier to read, and the clustering can be
enabled or disabled by the user. The clusters will be displayed as colored boxes containing the
relevant nodes.

The clustering splits different sessions of the same role into different clusters. For that, it uses the
following heuristic: two nodes from the same role are part of the same cluster if they are connected
by an edge resulting from the use of a linear fact. The rules within a cluster will take the color of
the cluster.

There are two methods to group by role:

Manual Clustering On can manually specify the rule(s) representing the behavior of a role. For
this, the rules are annotated with the role’s name as follows:

rule test[role="Alice"]:
[...]
-->
[...]

Look at the example below to see how this would appear in an image:
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Automatic Clustering An option called “Clustering By Role” is available among the settings,
which, when enabled, automatically sorts by role. This option is disabled by default. It groups
all rules with similar names into clusters, taking precedence over manual clustering. For example,
rules named Alice_1, Alice_2, Alice_test_1 and Bob_1 will be automatically separated into
three clusters:

• A cluster named Alice containing rules Alice_1 and Alice_2.
• A cluster named Alice_test containing the rule Alice_test_1.
• A cluster named Bob containing the rule Bob_1.

You can activate this option in the settings menu. If you opt to manually write the clustering, do
not enable this option, as it will cluster independently of the manually written roles.

Look at the example below to see how this would appear in an image:
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Model Specification using Processes

In this section, we provide an informal description of the process calculus now integrated in tamarin.
It is called SAPIC+, which stands for “Stateful Applied PI-Calculus” (plus) and is described in
the following papers:

• (Kremer and Künnemann 2016) introduced the original version of SAPIC and its translation
to multiset rewrite rules and axioms.

• (Backes et al. 2017) added non-deterministic choice, reliable channels and local progress to it.

• (Jacomme, Kremer, and Scerri 2017) added support for isolated execution environments.

• (Cheval et al. 2022) extended SAPIC to SAPIC+, introducing the new syntax that we will
introduce in the followup and translations to various tools.

A Protocol can be modelled in terms of rules or as a (single) process. The process is translated
into a set of rules that adhere to the semantics of the process calculus. It is even possible to mix
a process declaration and a set of rules, although this is not recommended, as the interactions
between the rules and the process depend on how precisely this translation is defined.

Processes

A SAPIC+ process is described using the grammar we will introduce and illustrate by example in
the followup. Throughout, let n stand for a fresh name, x for a variable, t, t1 or t2 for terms and
F for a fact and cond for a conditional, which is either a comparisson t1=t2 or a custom predicate.
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Standard applied-pi features

The main ingredients for modelling protocols are network communication and parallelism. We
start with the network communication and other constructs that model local operation and call
this simpler form of a process, elementary processes:

<P,Q> :: = (elementary processes)
new n; P .. binding of a fresh name

| out(t1,t2); P .. output of t2 on a channel t1
| out(t); P .. output of t on the public channel
| in(t,x);~P .. input on channel t binding input term to $x$}
| in(x);~P .. input on the public channel binding to $x$}
| if cond then P else Q .. conditional
| let t1 = t2 in P else Q .. let binding
| P | Q .. parallel composition
| 0 .. null process

The construct new a;P binds the fresh name a in P. Similar to the fact Fr(a), it models the
generation of a fresh, random value.

The processes out(t1,t2); P represent the output of a message t2 on a channel t1, whereas
in(t,x); P represents a process waiting to bind some input on channel t to the variable x. (Previ-
ous versions of SAPIC performed pattern matching. Instead, the let construct offers support for
pattern matching and, similar to the applied pi calculus (Abadi and Fournet 2001), we bind to a
variable.

If the channel is left out, the public channel 'c' is assumed, which is the case in the majority of
our examples. This is exactly what the facts In(x) and Out(t) represent.

Example. This process picks an encryption key, waits for an input and encrypts it.

new k; in(m); out(senc(m,k))

Processes can also branch: if cond then P else Q will execute either P or Q, depending on
whether cond holds. Most frequently, this is the equality check of form t1 = t2, but you can
also define a predicate using Tamarin’s security property syntax.

Let-bindings are allowed to faciliate writing processes where a term occur several times (possibly
as a subterm) within the process rule and to apply destructors. Destructor are function symbols
declared as such, e.g.:

functions: adec/2[destructor], aenc/2
equations:

adec(aenc(x.1, pk(x.2)), x.2) = x.1

declares a destructor adec. In contrast to the encryption (represented by aenc), the decryption may
fail, e.g., the term adec(aenc(m,pk(sk)),sk') is not representing a valid message. A destructor
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symbol allows to represent this failure. Destructors may only appear in let-patterns (i.e., to the
right of =). If one of the destructors in a let pattern fails, the process moves into the else branch,
e.g.,

new sk; new sk'; let x=adec(aenc(m,pk(sk)),sk') in P else Q

always moves into Q. Destructors cannot appear elsewhere in the process.

Furthermore, let-bindings permit pattern matching. This is very useful for deconstructing mes-
sages. E.g.:

in(x); let <'pair',y,z> = x in out(z); out(z)

To avoid user errors, pattern matchings are explicit in which variables they bind and which they
compare for equality, e.g., let <y,=z>=x in .. checks if x is a pair and if the second element equals
z; then it binds the first element to x. (Note: previous versions of Tamarin/SAPIC considered let-
bindings as syntactic sugar adhering to the same rules as let-bindings in rules. Now let is a
first-class primitive. )

The types of processes so far consists of actions that are separated with a semicolon ; and are
terminated with 0, which is called the terminal process or null process. This is a process that does
nothing. It is allowed to omit trailing 0 processes and else-branches that consist of a 0 process.

We can now come to the operations modelling parallelism. P | Q is the parallel execution of
processes P and Q. This is used, e.g., to model two participants in a protocol.

P+Q denotes external non-deterministic choice, which can be used to model alternatives. In that
sense, it is closer to a condition rather than two processes running in parallel: P+Q reduces to either
P' or Q', the follow-up processes or P or Q respectively.

Now we come to extended processes, that include standard processes, but also events and replica-
tions.

<P> :== (extended processes)
| event F; P .. event
| !P .. replication

The event construct is similar to actions in rules. In fact, it will be translated to actions. Like in
rules, events annotate parts of the processes and are useful for stating security properties. Each of
these constructs can be thought of as “local” computations.

!P is the replication of P, which allows an unbounded number of sessions in protocol executions.
It can be thought of to be an infinite number of processes P | .. | P running in parallel. If P
describes a webserver answering a single query, then !P is the webserver answering queries indefi-
nitely.



52 CONTENTS

Manipulation of global state

The SAPIC+ calculus is a dialect of the applied-pi calculus with additional features for storing,
retrieving and modifying global state. Stateful process include extended processes and, in addition,
the remaining constructs that are used to manipulate global state.

<P,Q> :== (stateful processes)
| insert t1, t2; P .. set state t1 to t2
| delete t; P .. delete state t
| lookup t as x in P else Q ; P .. read state t into variable x
| lock t; P .. set lock on t
| unlock t; P .. remove lock on t

The construct insert t1,t2; P binds the value t2 to the key t1. Successive inserts overwrite
this binding. The store is global, but as t1 is a term, it can be used to define name spaces. E.g.,
if a webserver is identified by a name w_id, then it could prefix it’s store as follows: insert
<'webservers',w_id,'store'>, data; P.
The construct delete t; P ‘undefines’ the binding.
The construct lookup t as x in P else Q allows for retrieving the value associated to t and
binds it to the variable x when entering P. If the mapping is undefined for t, the process behaves
as Q.
The lock and unlock constructs are used to gain or waive exclusive access to a resource t, in the
style of Dijkstra’s binary semaphores: if a term t has been locked, any subsequent attempt to lock
t will be blocked until t has been unlocked. This is essential for writing protocols where parallel
processes may read and update a common memory.

Inline multiset-rewrite rules

There is a hidden feature for experts: inline multiset-rewrite rules: [l] --[a]-> r; P is a valid
process. Embedded rules apply if their preconditions apply (i.e., the facts on the left-hand-side
are present) and the process is reduced up to this rule. If the rule applies in the current state,
the process reduces to P. We advice to avoid these rules whenever possible, as they run counter
to the aim of SAPIC: to provide clear, provably correct high-level abstractions for the modelling
of protocols. Note also that the state-manipulation constructs lookup x as v, insert x,y and
delete x manage state by emitting actions IsIn(x,y'), Insert(x,y) and Delete(x) and enforc-
ing their proper semantics via restrictions. For example: an action IsIn(x,y), which expresses a
succesful lookup, requires that an action Insert(x,y) has occurred previously, and in between, no
other Insert(x,y') or Delete(x) action has changed the global store at the position x. Hence,
the global store is distinct from the set of facts in the current state.

Enforcing local progress (optional)

The translation from processes can be modified so it enforces a different semantics. In this semantics,
the set of traces consists of only those where a process has been reduced as far as possible. A
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process can reduce unless it is waiting for some input, it is under replication, or unless it is already
reduced up to the 0-process.

options: translation-progress

This can be used to model time-outs. The following process must reduce to either P or
out('help');0:

( in(x); P) + (out('help');0)

If the input message received, it will produce regulary, in this example: with P. If the input is not
received, there is no other way to progress except for the right-hand side. But progress it must, so
the right-hand side can model a recovery protocol.

In the translated rules, events ProgressFrom_p and ProgressTo_p are added. Here p marks a
position that, one reached, requires the corresponding ProgressTo event to appear. This is enforced
by restrictions. Note that a process may need to process to more than one position, e.g.,

new a; (new b; 0 | new c; 0)

progresses to both trailing 0-processes.

It may also process to one out of many positions, e.g., here

in(x); if x='a' then 0 else 0

More details can be found in the corrsponding paper (Backes et al. 2017). Note that local progress
by itself does not guarantee that messages arrive. Recovery protocols often rely on a trusted third
party, which is possibly offline most of time, but can be reached using the builtin theory for reliable
channels.

Modeling Isolated Execution Environments

IEEs, or enclaves, allow to run code inside a secure environment and to provide a certificate of the
current state (including the executed program) of the enclave. A localized version of the applied
pi-calculus, defined in (Jacomme, Kremer, and Scerri 2017) and included in SAPIC, allows to model
such environments.

Processes can be given a unique identifier, which we call location:

let A = (...)@loc

Locations can be any term (which may depend on previous inputs). A location is an identifier
which allows to talk about its process. Inside a location, a report over some value can be produced:
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(...
let x=report(m) in

...)@loc

Some external user can then verify that some value has been produced at a specific location, i.e
produced by a specific process or program, by using the check_rep function:

if input=check_rep(rep,loc) then

This will be valid only if rep has been produced by the previous instruction, with m=input.

An important point about enclaves is that any user, e.g an attacker, can use enclaves, and thus
produce reports for its own processes or locations. But if the attacker can produce a report for any
location, he can break all security properties associated to it. To this end, the user can define a
set of untrusted locations, which amounts to defining a set of processes that he does not trust, by
defining a builtin Report predicate:

predicates:
Report(x,y) <=> phi(x,y)

The attacker can then produce any report(m)@loc if phi(m,loc) is true.

More details can be found in the corresponding paper (Jacomme, Kremer, and Scerri 2017), and
the examples.

Process declarations using let

It is advisable to structure processes around the protocol roles they represent. These can be declared
using the let construct:

let Webserver (identity) = in(<'Get',identity..>); ..

let Webbrowser () = ..

(! new identity !Webserver(identity)) | ! Webbroser

These can be nested, i.e., this is valid:

let A() = ..
let B() = A() | A()
!B()
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Typing

It is possible to declare types to avoid potential user errors. This does not affect the attacker, as
these types are disregarded after translation into multiset-rewrite rues.

Types can be declared for function symbols:

functions: f(bitstring):bitstring, g(lol):lol,
h/1 // will implicitely typed later.

for processes:

new x:lol; // x is of type lol now
new y; // y's type will be inferred
out(f(y)); // now y must be type bitstring ...
// out(f(x)); // fails: f expects bitstring
out(<x,y>); out(x + y); out(f(<x,y>)); // lists and AC operators are type-transparent
out(h(h(x))); // implictely types h as lol->lol
// out(f(h(x))); // fails: as h goes to lol and f wants bitstring

and subprocesses:

let P(a:lol) =

Export features

It is possible to export processes defined in .spthy files into the formats used by other protocol
verifiers, making it possible to switch between tools. One can even translate lemmas in one tool
to assumptions in other to combine these results. The correctness of the translation is proven in
(Cheval et al. 2022).

The -m flag selects an output module:

-m --output-module[=spthy|spthytyped|msr|proverif|deepsec]

The following outputs are supported:

• spthy: parse .spthy file and output
• spthytyped - parse and type .spthy file ad output
• msr - parse and type .spthy file and translate processes to multiset-rewrite rules
• proverif : - translate to ProVerif input format
• deepsec: - translate to Deepsec input format

https://bblanche.gitlabpages.inria.fr/proverif/
https://deepsec-prover.github.io/
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Lemma selection

The same spthy file may be used with multiple tools as backend. To list the tools that a lemma
should be exported to, use the output attribute:

lemma secrecy[reuse, output=[proverif,msr]]:

Lemmas are omitted when the currently selected output module is not in that list.

Exporting queries

Security properties are automatically translated, if it is possible. (ProVerif only supports two
quantifier alternations, for example.) As, e.g., DeepSec, supports queries that are not expressible
in Tamarin’s language, it is possible to define blocks that are covered on export. They are written
as:

export IDENTIFIER:
"

text to export
"

where IDENTIFIER is one of the following:

• requests: is included in the requests the target solver tries to prove. E.g.:

export requests:
"
let sys1 = new sk; (!^3 (new skP; P(sk,skP)) | !^3 S(sk)).

let sys2 = new sk; ( ( new skP; !^3 P(sk,skP)) | !^3 S(sk)).

query session_equiv(sys1,sys2).
"

Smart export features

• Some predicates / conditions appear in if .. processes have dedicates translations.

Natural numbers

SAPIC supports the usage of the builtin natural numbers of both GSVerif and Tamarin.
To use them, variables must be declared with the nat type, and the corresponding builtin must be
declared:
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builtins: natural-numbers

process:

in(ctr0:nat);
let ctr1:nat = ctr0 %+ %1 in
out(ctr1)

The subterm operator << will be translated for GSVerif as <.

Beware, declaring a nat variable in SAPIC does not instantiate a nat Tamarin variable, which may
create additional possible sources. To declare and use a true Tamarin nat variable, similar to fresh
variables and other, each occurence of the variable must be prefixed with % (or ~ in the case of fresh
variables):

builtins: natural-numbers

process:

in(%ctr0:nat);
let ctr1:nat = %ctr0 %+ %1 in
out(ctr1)

This may however lead to divergence in Tamarin and Proverif threat models.

Options

Some options allow altering the behaviour of the translation, but can leat to divergence between
Tamarin and Proverif. They should be used with care. Adding an option is performed in the
headers of the file, with:

options: opt1, opt2, ...

The available options are:

• translation-state-optimisation: this enables the pure state translation described in the
SAPIC+ paper. Both the original and the optimized version do not always yield the same
benefit, hence the optional switch.

• translation-compress-events: by default, each event is translated in a singular rule. This
may create a Tamarin slowdown when translating a sequence of events, but is due to the
fact that in Proverif, multiple events always occur at distinct timestampe. This option allows
compressing events into a single rule.

• translation-progress: see above.



58 CONTENTS

Property Specification

In this section we present how to specify protocol properties as trace and observational equivalence
properties, based on the action facts given in the model. Trace properties are given as guarded first-
order logic formulas and observational equivalence properties are specified using the diff operator,
both of which we will see in detail below.

Trace Properties

The Tamarin multiset rewriting rules define a labeled transition system. The system’s state is a
multiset (bag) of facts and the initial system state is the empty multiset. The rules define how
the system can make a transition to a new state. The types of facts and their use are described
in Section Rules. Here we focus on the action facts, which are used to reason about a protocol’s
behaviour.

A rule can be applied to a state if it can be instantiated such that its left hand side is contained in
the current state. In this case, the left-hand side facts are removed from the state, and replaced by
the instantiated right hand side. The application of the rule is recorded in the trace by appending
the instantiated action facts to the trace.

For instance, consider the following fictitious rule

rule fictitious:
[ Pre(x), Fr(~n) ]

--[ Act1(~n), Act2(x) ]-->
[ Out(<x,~n>) ]

The rule rewrites the system state by consuming the facts Pre(x) and Fr(~n) and producing the
fact Out(<x,~n>). The rule is labeled with the actions Act1(~n) and Act2(x). The rule can be
applied if there are two facts Pre and Fr in the system state whose arguments are matched by the
variables x and ~n. In the application of this rule, ~n and x are instantiated with the matched
values and the state transition is labeled with the instantiations of Act1(~n) and Act2(x). The
two instantiations are considered to have occurred at the same timepoint.

A trace property is a set of traces. We define a set of traces in Tamarin using first-order logic formulas
over action facts and timepoints. More precisely, Tamarin’s property specification language is a
guarded fragment of a many-sorted first-order logic with a sort for timepoints. This logic supports
quantification over both messages and timepoints.

The syntax for specifying security properties is defined as follows:

• All for universal quantification, temporal variables are prefixed with #

• Ex for existential quantification, temporal variables are prefixed with #

• ==> for implication

• & for conjunction
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• | for disjunction

• not for negation

• f @ i for action constraints, the sort prefix for the temporal variable ‘i’ is optional

• i < j for temporal ordering, the sort prefix for the temporal variables ‘i’ and ‘j’ is optional

• #i = #j for an equality between temporal variables ‘i’ and ‘j’

• x = y for an equality between message variables ‘x’ and ‘y’

• Pred(t1,..,tn) as syntactic sugar for instantiating a predicate Pred for the terms t1 to tn

All action fact symbols may be used in formulas. The terms (as arguments of those action facts)
are more limited. Terms are only allowed to be built from quantified variables, public constants
(names delimited using single-quotes), and free function symbols including pairing. This excludes
function symbols that appear in any of the equations. Moreover, all variables must be guarded. If
they are not guarded, Tamarin will produce an error.

Predicates

Predicates are defined using the predicates construct, and substituted while parsing trace prop-
erties, whether they are part of lemmas, restrictions or embedded restrictions:

builtins: multiset
predicates: Smaller(x,y) <=> Ex z. x + z = y

[..]

lemma one_smaller_two:
"All x y #i. B(x,y)@i ==> Smaller(x,y)"

Guardedness

To ensure guardedness, for universally quantified variables, one has to check that they all occur in
an action constraint right after the quantifier and that the outermost logical operator inside the
quantifier is an implication. For existentially quantified variables, one has to check that they all
occur in an action constraint right after the quantifier and that the outermost logical operator inside
the quantifier is a conjunction. We do recommend to use parentheses, when in doubt about the
precedence of logical connectives, but we follow the standard precedence. Negation binds tightest,
then conjunction, then disjunction and then implication.
To specify a property about a protocol to be verified, we use the keyword lemma followed by a name
for the property and a guarded first-order formula. This expresses that the property must hold for
all traces of the protocol. For instance, to express the property that the fresh value ~n is distinct
in all applications of the fictitious rule (or rather, if an action with the same fresh value appears
twice, it actually is the same instance, identified by the timepoint), we write
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lemma distinct_nonces:
"All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

or equivalently

lemma distinct_nonces:
all-traces

"All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

We can also express that there exists a trace for which the property holds. We do this by adding
the keyword exists-trace after the name and before the property. For instance, the following
lemma is true if and only if the preceding lemma is false:

lemma distinct_nonces:
exists-trace

"not All n #i #j. Act1(n)@i & Act1(n)@j ==> #i=#j"

Secrecy

In this section we briefly explain how you can express standard secrecy properties in Tamarin and
give a short example. See Protocol and Standard Security Property Specification Templates for an
in-depth discussion.

Tamarin’s built-in message deduction rule

rule isend:
[ !KU(x) ]

--[ K(x) ]-->
[ In(x) ]

allows us to reason about the Dolev-Yao adversary’s knowledge. To specify the property that a
message x is secret, we propose to label a suitable protocol rule with a Secret action. We then
specify a secrecy lemma that states whenever the Secret(x) action occurs at timepoint i, the
adversary does not know x.

lemma secrecy:
"All x #i.

Secret(x) @i ==> not (Ex #j. K(x)@j)"

Example. The following Tamarin theory specifies a simple one-message protocol. Agent A sends a
message encrypted with agent B’s public key to B. Both agents claim secrecy of a message, but only
agent A’s claim is true. To distinguish between the two claims we add the action facts Role('A')
(respectively Role('B')) to the rule modeling role A (respectively to the rule for role B). We then
specify two secrecy lemmas, one for each role.
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theory secrecy_asym_enc
begin

builtins: asymmetric-encryption

/* We formalize the following protocol:

1. A -> B: {A,na}pk(B)

*/

// Public key infrastructure
rule Register_pk:
[ Fr(~ltkX) ]
-->
[ !Ltk($X, ~ltkX)
, !Pk($X, pk(~ltkX))
, Out(pk(~ltkX))
]

// Compromising an agent's long-term key
rule Reveal_ltk:
[ !Ltk($X, ltkX) ] --[ Reveal($X) ]-> [ Out(ltkX) ]

// Role A sends first message
rule A_1_send:
[ Fr(~na)
, !Ltk($A, ltkA)
, !Pk($B, pkB)
]

--[ Send($A, aenc(<$A, ~na>, pkB))
, Secret(~na), Honest($A), Honest($B), Role('A')
]->
[ St_A_1($A, ltkA, pkB, $B, ~na)
, Out(aenc(<$A, ~na>, pkB))
]

// Role B receives first message
rule B_1_receive:
[ !Ltk($B, ltkB)
, In(aenc(<$A, na>,pk(ltkB)))
]

--[ Recv($B, aenc(<$A, na>, pk(ltkB)))
, Secret(na), Honest($B), Honest($A), Role('B')
]->
[ St_B_1($B, ltkB, $A, na)
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]

lemma executable:
exists-trace

"Ex A B m #i #j. Send(A,m)@i & Recv(B,m) @j"

lemma secret_A:
all-traces

"All n #i. Secret(n) @i & Role('A') @i ==> (not (Ex #j. K(n)@j)) | (Ex B #j.
Reveal(B)@j & Honest(B)@i)"↪→

lemma secret_B:
all-traces

"All n #i. Secret(n) @i & Role('B') @i ==> (not (Ex #j. K(n)@j)) | (Ex B #j.
Reveal(B)@j & Honest(B)@i)"↪→

end

In the above example the lemma secret_A holds as the initiator generated the fresh value, while
the responder has no guarantees, i.e., lemma secret_B yields an attack.

Authentication

In this section we show how to specify a simple message authentication property. For specifications
of the properties in Lowe’s hierarchy of authentication specifications (Lowe 1997) see the Section
Protocol and Standard Security Property Specification Templates.

We specify the following message authentication property: If an agent a believes that a message m
was sent by an agent b, then m was indeed sent by b. To specify a’s belief we label an appropriate
rule in a’s role specification with the action Authentic(b,m). The following lemma defines the set
of traces that satisfy the message authentication property.

lemma message_authentication:
"All b m #j. Authentic(b,m) @j ==> Ex #i. Send(b,m) @i &i<j"

A simple message authentication example is the following one-message protocol. Agent A sends a
signed message to agent B. We model the signature using asymmetric encryption. A better model
is shown in the section on Restrictions.

theory auth_signing_simple
begin

builtins: asymmetric-encryption
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/* We formalize the following protocol:

1. A -> B: {A,na}sk(A)

*/

// Public key infrastructure
rule Register_pk:
[ Fr(~ltkX) ]
-->
[ !Ltk($X, ~ltkX)
, !Pk($X, pk(~ltkX))
, Out(pk(~ltkX))
]

// Role A sends first message
rule A_1_send:
[ Fr(~na)
, !Ltk($A, ltkA)
]

--[ Send($A, <$A, ~na>)
]->
[ St_A_1($A, ltkA, ~na)
, Out(aenc(<$A, ~na>,ltkA))
]

// Role B receives first message
rule B_1_receive:
[ !Pk($A, pk(skA))
, In(aenc(<$A, na>,skA))
]

--[ Recv($B, <$A, na>)
, Authentic($A,<$A, na>), Honest($B), Honest($A)
]->
[ St_B_1($B, pk(skA), $A, <$A, na>)
]

lemma executable:
exists-trace
"Ex A B m #i #j. Send(A,m)@i & Recv(B,m) @j"

lemma message_authentication:
"All b m #i. Authentic(b,m) @i
==> (Ex #j. Send(b,m) @j & j<i)"

end
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Observational Equivalence

All the previous properties are trace properties, i.e., properties that are defined on each trace
independently. For example, the definition of secrecy required that there is no trace where the
adversary could compute the secret without having corrupted the agent.

In contrast, Observational Equivalence properties reason about two systems (for example two in-
stances of a protocol), by showing that an intruder cannot distinguish these two systems. This can
be used to express privacy-type properties, or cryptographic indistinguishability properties.

For example, a simple definition of privacy for voting requires that an adversary cannot distinguish
two instances of a voting protocol where two voters swap votes. That is, in the first instance, voter A
votes for candidate a and voter B votes for b, and in the second instance voter A votes for candidate
b and voter B votes for a. If the intruder cannot tell both instances apart, he does not know which
voter votes for which candidate, even though he might learn the result, i.e., that there is one vote
for a and one for b.

Tamarin can prove such properties for two systems that only differ in terms using the diff( , )
operator. Consider the following toy example, where one creates a public key, two fresh values ~a
and ~b, and publishes ~a. Then one encrypts either ~a or ~b (modeled using the diff operator)
and sends out the ciphertext:

// Generate a public key and output it
// Choose two fresh values and reveal one of it
// Encrypt either the first or the second fresh value
rule Example:

[ Fr(~ltk)
, Fr(~a)
, Fr(~b) ]

--[ Secret( ~b ) ]->
[ Out( pk(~ltk) )
, Out( ~a )
, Out( aenc( diff(~a,~b), pk(~ltk) ) )
]

In this example, the intruder cannot compute ~b as formalized by the following lemma:

lemma B_is_secret:
" /* The intruder cannot know ~b: */
All B #i. (
/* ~b is claimed secret implies */
Secret(B) @ #i ==>
/* the adversary does not know '~b' */
not( Ex #j. K(B) @ #j )

)
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However, he can know whether in the last message ~a or ~b was encrypted by simply taking the
output ~a, encrypting it with the public key and comparing it to the published ciphertext. This is
captured using observational equivalence.

To see how this works, we need to start Tamarin in observational equivalence mode by adding a
--diff to the command:

tamarin-prover interactive --diff ObservationalEquivalenceExample.spthy

Now point your browser to http://localhost:3001. After clicking on the theory ObservationalEquivalenceExample,
you should see the following.

There are multiple differences to the ‘normal’ trace mode.

First, there is a new option Diff Rules, which will simply present the rewrite rules from the .spthy
file. (See image below.)

Second, all the other points (Message Theory, Multiset Rewrite Rules, Raw/Refined Sources) have
been quadruplicated. The reason for this is that any input file with the diff operator actually

http://localhost:3001
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specifies two models: one model where each instance of diff(x,y) is replaced with x (the left
hand side, or LHS for short), and one model where each instance of diff(x,y) is replaced with y
(the right hand side, or RHS for short). Moreover, as the observational equivalence mode requires
different precomputations, each of the two models is treated twice. For example, the point RHS:
Raw sources [Diff] gives the raw sources for the RHS interpretation of the model in observational
equivalence mode, whereas LHS: Raw sources gives the raw sources for the LHS interpretation of
the model in the ‘trace’ mode.

Third, all lemmas have been duplicated: the lemma B_is_secret exists once on the left hand side
(marked using [left]) and once on the right hand side (marked using [right]), as both models
can differ and thus the lemma needs to be proven on both sides.

Finally, there is a new lemma Observational_equivalence, added automatically by Tamarin (so
no need to define it in the .spthy input file). By proving this lemma we can prove observational
equivalence between the LHS and RHS models.

In the Diff Rules, we have the rules as written in the input file:

If we click on LHS: Multiset rewriting rules, we get the LHS interpretation of the rules (here
diff(~a, ~b) was replaced by ~a):
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If we click on RHS: Multiset rewriting rules, we get the RHS interpretation of the rules (here
diff(~a, ~b) was replaced by ~b):
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We can easily prove the B_is_secret lemma on both sides:
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To start proving observational equivalence, we only have the proof step 1. rule-equivalence.
This generates multiple subcases:
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Essentially, there is a subcase per protocol rule, and there are also cases for several adversary rules.
The idea of the proof is to show that whenever a rule can be executed on either the LHS or RHS,
it can also be executed on the other side. Thus, no matter what the adversary does, he will always
see ‘equivalent’ executions. To prove this, Tamarin computes for each rule all possible executions
on both sides, and verifies whether an ‘equivalent’ execution exists on the other side. If we continue
our proof by clicking on backward-search, Tamarin generates two sub-cases, one for each side. For
each side, Tamarin will continue by constructing all possible executions of this rule.



PROPERTY SPECIFICATION 71

During this search, Tamarin can encounter executions that can be ‘mirrored’ on the other side, for
example the following execution where the published key is successfully compared to itself:
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Or, Tamarin can encounter executions that do not map to the other side. For example the following
execution on the LHS that encrypts ~a using the public key and successfully compares the result to
the published ciphertext, is not possible on the RHS (as there the ciphertext contains ~b). Such an
execution corresponds to a potential attack, and thus invalidates the “Observational_equivalence”
lemma.
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Note that Tamarin needs to potentially consider numerous possible executions, which can result in
long proof times or even non-termination. If possible it tries not to resolve parts of the execution
that are irrelevant, but this is not always sufficient.

Restrictions

Restrictions restrict the set of traces to be considered in the protocol analysis. They can be used for
purposes ranging from modeling branching behavior of protocols to the verification of signatures.
We give a brief example of the latter. Consider the simple message authentication protocol, where
an agent A sends a signed message to an agent B. We use Tamarin’s built-in equational theory for
signing.

// Role A sends first message
rule A_1_send:
let m = <A, ~na>
in
[ Fr(~na)
, !Ltk(A, ltkA)
, !Pk(B, pkB)
]

--[ Send(A, m)
]->
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[ St_A_1(A, ltkA, pkB, B, ~na)
, Out(<m,sign(m,ltkA)>)
]

// Role B receives first message
rule B_1_receive:
[ !Ltk(B, ltkB)
, !Pk(A, pkA)
, In(<m,sig>)
]

--[ Recv(B, m)
, Eq(verify(sig,m,pkA),true)
, Authentic(A,m), Honest(B), Honest(A)
]->
[ St_B_1(B, ltkB, pkA, A, m)
]

In the above protocol, agent B verifies the signature sig on the received message m. We model this
by considering only those traces of the protocol in which the application of the verify function to
the received message equals the constant true. To this end, we specify the equality restriction

restriction Equality:
"All x y #i. Eq(x,y) @i ==> x = y"

The full protocol theory is given below.

theory auth_signing
begin

builtins: signing

/* We formalize the following protocol:

1. A -> B: {A,na}sk(A)

using Tamarin's builtin signing and verification functions.

*/

// Public key infrastructure
rule Register_pk:
[ Fr(~ltkA) ]
-->
[ !Ltk($A, ~ltkA)
, !Pk($A, pk(~ltkA))
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, Out(pk(~ltkA))
]

// Compromising an agent's long-term key
rule Reveal_ltk:
[ !Ltk(A, ltkA) ] --[ Reveal(A) ]-> [ Out(ltkA) ]

// Role A sends first message
rule A_1_send:
let m = <A, ~na>
in
[ Fr(~na)
, !Ltk(A, ltkA)
, !Pk(B, pkB)
]

--[ Send(A, m)
]->
[ St_A_1(A, ltkA, pkB, B, ~na)
, Out(<m,sign(m,ltkA)>)
]

// Role B receives first message
rule B_1_receive:
[ !Ltk(B, ltkB)
, !Pk(A, pkA)
, In(<m,sig>)
]

--[ Recv(B, m)
, Eq(verify(sig,m,pkA),true)
, Authentic(A,m), Honest(B), Honest(A)
]->
[ St_B_1(B, ltkB, pkA, A, m)
]

restriction Equality:
"All x y #i. Eq(x,y) @i ==> x = y"

lemma executable:
exists-trace
"Ex A B m #i #j. Send(A,m)@i & Recv(B,m) @j"

lemma message_authentication:
"All b m #i. Authentic(b,m) @i
==> (Ex #j. Send(b,m) @j & j<i)

| (Ex B #r. Reveal(B)@r & Honest(B) @i & r < i)"
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end

Note that restrictions can also be used to verify observational equivalence properties. As there are
no user-specifiable lemmas for observational equivalence, restrictions can be used to remove state
space, which essentially removes degenerate cases.

Common restrictions

Here is a list of common restrictions. Do note that you need to add the appropriate action facts to
your rules for these restrictions to have impact.

Unique First, let us show a restriction forcing an action (with a particular value) to be unique:

restriction unique:
"All x #i #j. UniqueFact(x) @#i & UniqueFact(x) @#j ==> #i = #j"

We call the action UniqueFact and give it one argument. If it appears on the trace twice, it actually
is only once, as the two time points are identified.

Equality Next, let us consider an equality restriction. This is useful if you do not want to use
pattern-matching explicitly, but maybe want to ensure that the decryption of an encrypted value
is the original value, assuming correct keys. The restriction looks like this:

restriction Equality:
"All x y #i. Eq(x,y) @#i ==> x = y"

which means that all instances of the Eq action on the trace have the same value as both its
arguments.

Inequality Now, let us consider an inequality restriction, which ensures that the two arguments
of Neq are different:

restriction Inequality:
"All x #i. Neq(x,x) @ #i ==> F"

This is very useful to ensure that certain arguments are different.
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OnlyOnce If you have a rule that should only be executed once, put OnlyOnce() as an action
fact for that rule and add this restriction:

restriction OnlyOnce:
"All #i #j. OnlyOnce()@#i & OnlyOnce()@#j ==> #i = #j"

Then that rule can only be executed once. Note that if you have multiple rules that all have this
action fact, at most one of them can be executed a single time.
A similar construction can be used to limit multiple occurrences of an action for specific instan-
tiations of variables, by adding these as arguments to the action. For example, one could put
OnlyOnceV('Initiator') in a rule creating an initiator process, and OnlyOnceV('Responder') in
the rule for the responder. If used with the following restriction, this would then yield the expected
result of at most one initiator and at most one responder:

restriction OnlyOnceV:
"All #i #j x. OnlyOnceV(x)@#i & OnlyOnceV(x)@#j ==> #i = #j"

Less than If we use the natural-numbers built-in we can construct numbers as “%1 %+ … %+
%1”, and have a restriction enforcing that one number is less than another, say LessThan:

restriction LessThan:
"All x y #i. LessThan(x,y)@#i ==> x � y"

You would then add the LessThan action fact to a rule where you want to enforce that a counter
has strictly increased.
Similarly you can use a GreaterThan where we want x to be strictly larger than y:

restriction GreaterThan:
"All x y #i. GreaterThan(x,y)@#i ==> y � x"

Embedded restrictions

Restrictions can be embedded into rules. This is syntactic sugar:

rule X:
[ left-facts] --[_restrict(formula)]-> [right-facts]

translates to

rule X:
[ left-facts] --[ NewActionFact(fv) ]-> [right-facts]

restriction Xrestriction:
"All fv #NOW. NewActionFact(fv)@NOW ==> formula
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where fv are the free variables in formula appropriatly renamed.

Note that form can refer to the timepoint #NOW, which will be bound to the time-point of the
current instantiation of this rule. Consider the following example:

builtins: natural-numbers

predicates: Smaller(x,y) <=> x � y
, Equal(x,y) <=> x = y
, Added(x,y) <=> Ex #a. A(x,y)@a & #a < #NOW

rule A:
[In(x), In(y)] --[ _restrict(Smaller(x,y)), A(x,y), B(%1,%1 %+ %1)]-> [ X('A')]

rule B:
[In(x), In(y)] --[ _restrict(Added(x,y))]-> []

lemma one_smaller_two:
"All x y #i. B(x,y)@i ==> Smaller(x,y)"

lemma unequal:
"All x y #i. A(x,y)@i ==> not (Equal(x,y))"

Lemma Annotations

Tamarin supports a number of annotations to its lemmas, which change their meaning. Any com-
bination of them is allowed. We explain them in this section. The usage is that any annotation
goes into square brackets after the lemma name, i.e., for a lemma called “Name” and the added
annotations “Annotation1” and “Annotation2”, this looks like so:

lemma Name [Annotation1,Annotation2]:

sources

To declare a lemma as a source lemma, we use the annotation sources:

lemma example [sources]:
"..."

This means a number of things:

• The lemma’s verification will use induction.
• The lemma will be verified using the Raw sources.
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• The lemma will be used to generate the Refined sources, which are used for verification of
all non-sources lemmas.

Source lemmas are necessary whenever the analysis reports partial deconstructions left in
the Raw sources. See section on Open chains for details on this.
All sources lemmas are used only for the case distinctions and do not benefit from other lemmas
being marked as reuse.

use_induction

As you have seen before, the first choice in any proof is whether to use simplification (the de-
fault) or induction. If you know that a lemma will require induction, you just annotate it with
use_induction, which will make it use induction instead of simplification.

reuse

A lemma marked reuse will be used in the proofs of all lemmas syntactically following it (except
sources lemmas as above). This includes other reuse lemmas that can transitively depend on each
other.
Note that reuse lemmas are ignored in the proof of the equivalence lemma.

diff_reuse

A lemma marked diff_reuse will be used in the proof of the observational equivalence lemma.
Note that diff_reuse lemmas are not reused for trace lemmas.

hide_lemma=L

It can sometimes be helpful to have lemmas that are used only for the proofs of other lemmas. For
example, assume 3 lemmas, called A, B, and C. They appear in that order, and A and B are marked
reuse. Then, during the proof of C both A and B are reused, but sometimes you might only want to
use B, but the proof of B needs A. The solution then is to hide the lemma A in C:

lemma A [reuse]:
...

lemma B [reuse]:
...

lemma C [hide_lemma=A]:
...

This way, C uses B which in turn uses A, but C does not use A directly.
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left and right

In the observational equivalence mode you have two protocols, the left instantiation of the diff-terms
and their right instantiation. If you want to consider a lemma only on the left or right instantiation
you annotate it with left, respectively right. If you annotate a lemma with [left,right] then
both lemmas get generated, just as if you did not annotate it with either of left or right.

Protocol and Standard Security Property Specification Templates

In this section we provide templates for specifying protocols and standard security properties in a
unified manner.

Protocol Rules

A protocol specifies two or more roles. For each role we specify an initialization rule that generates
a fresh run identifier id (to distinguish parallel protocol runs of an agent) and sets up an agent’s
initial knowledge including long term keys, private keys, shared keys, and other agent’s public keys.
We label such a rule with the action fact Create(A,id), where A is the agent name (a public
constant) and id the run identifier and the action fact Role('A'), where 'A' is a public constant
string. An example of this is the following initialization rule:

// Initialize Role A
rule Init_A:
[ Fr(~id)
, !Ltk(A, ltkA)
, !Pk(B, pkB)
]

--[ Create(A, ~id), Role('A') ]->
[ St_A_1(A, ~id, ltkA, pkB, B)
]

The pre-distributed key infrastructure is modeled with a dedicated rule that may be accompanied by
a key compromise rule. The latter is to model compromised agents and is labeled with a Reveal(A)
action fact, where A is the public constant denoting the compromised agent. For instance, a public
key infrastructure is modeled with the following two rules:

// Public key infrastructure
rule Register_pk:
[ Fr(~ltkA) ]
-->
[ !Ltk($A, ~ltkA)
, !Pk($A, pk(~ltkA))
, Out(pk(~ltkA))
]
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rule Reveal_ltk:
[ !Ltk(A, ltkA) ] --[ Reveal(A) ]-> [ Out(ltkA) ]

Secrecy

We use the Secret(x) action fact to indicate that the message x is supposed to be secret. The simple
secrecy property "All x #i. Secret(x) @i ==> not (Ex #j. K(x)@j)" may not be satisfiable
when agents’ keys are compromised. We call an agent whose keys are not compromised an honest
agent. We indicate assumptions on honest agents by labeling the same rule that the Secret action
fact appears in with an Honest(B) action fact, where B is the agent name that is assumed to be
honest. For instance, in the following rule the agent in role 'A' is sending a message, where the
nonce ~na is supposed to be secret assuming that both agents A and B are honest.

// Role A sends first message
rule A_1_send:
[ St_A_1(A, ~id, ltkA, pkB, B)
, Fr(~na)
]

--[ Send(A, aenc{A, ~na}pkB)
, Secret(~na), Honest(A), Honest(B), Role('A')
]->
[ St_A_2(A, ~id, ltkA, pkB, B, ~na)
, Out(aenc{A, ~na}pkB)
]

We then specify the property that a message x is secret as long as agents assumed to be honest
have not been compromised as follows

lemma secrecy:
"All x #i.
Secret(x) @i ==>
not (Ex #j. K(x)@j)

| (Ex B #r. Reveal(B)@r & Honest(B) @i)"

The lemma states that whenever a secret action Secret(x) occurs at timepoint i, the adversary
does not know x or an agent claimed to be honest at time point i has been compromised at a
timepoint r.

A stronger secrecy property is perfect forward secrecy. It requires that messages labeled with a
Secret action before a compromise remain secret.

lemma secrecy_PFS:
"All x #i.
Secret(x) @i ==>
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not (Ex #j. K(x)@j)
| (Ex B #r. Reveal(B)@r & Honest(B) @i & r < i)"

Example. The following Tamarin theory specifies a simple one-message protocol. Agent A sends a
message encrypted with agent B’s public key to B. Both agents claim secrecy of a message, but only
agent A’s claim is true. To distinguish between the two claims we add the action facts Role('A')
and Role('B') for role A and B, respectively and specify two secrecy lemmas, one for each role.

The perfect forward secrecy claim does not hold for agent A. We show this by negating the perfect
forward secrecy property and stating an exists-trace lemma.

theory secrecy_template
begin

builtins: asymmetric-encryption

/* We formalize the following protocol:

1. A -> B: {A,na}pk(B)

*/

// Public key infrastructure
rule Register_pk:
[ Fr(~ltkA) ]
-->
[ !Ltk($A, ~ltkA)
, !Pk($A, pk(~ltkA))
, Out(pk(~ltkA))
]

rule Reveal_ltk:
[ !Ltk(A, ltkA) ] --[ Reveal(A) ]-> [ Out(ltkA) ]

// Initialize Role A
rule Init_A:
[ Fr(~id)
, !Ltk(A, ltkA)
, !Pk(B, pkB)
]

--[ Create(A, ~id), Role('A') ]->
[ St_A_1(A, ~id, ltkA, pkB, B)
]

// Initialize Role B
rule Init_B:



PROPERTY SPECIFICATION 83

[ Fr(~id)
, !Ltk(B, ltkB)
, !Pk(A, pkA)
]

--[ Create(B, ~id), Role('B') ]->
[ St_B_1(B, ~id, ltkB, pkA, A)
]

// Role A sends first message
rule A_1_send:
[ St_A_1(A, ~id, ltkA, pkB, B)
, Fr(~na)
]

--[ Send(A, aenc{A, ~na}pkB)
, Secret(~na), Honest(A), Honest(B), Role('A')
]->
[ St_A_2(A, ~id, ltkA, pkB, B, ~na)
, Out(aenc{A, ~na}pkB)
]

// Role B receives first message
rule B_1_receive:
[ St_B_1(B, ~id, ltkB, pkA, A)
, In(aenc{A, na}pkB)
]

--[ Recv(B, aenc{A, na}pkB)
, Secret(na), Honest(B), Honest(A), Role('B')
]->
[ St_B_2(B, ~id, ltkB, pkA, A, na)
]

lemma executable:
exists-trace
"Ex A B m #i #j. Send(A,m)@i & Recv(B,m) @j"

lemma secret_A:
"All n #i. Secret(n) @i & Role('A') @i ==>
(not (Ex #j. K(n)@j)) | (Ex X #j. Reveal(X)@j & Honest(X)@i)"

lemma secret_B:
"All n #i. Secret(n) @i & Role('B') @i ==>
(not (Ex #j. K(n)@j)) | (Ex X #j. Reveal(X)@j & Honest(X)@i)"

lemma secrecy_PFS_A:
exists-trace
"not All x #i.
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Secret(x) @i & Role('A') @i ==>
not (Ex #j. K(x)@j)

| (Ex B #r. Reveal(B)@r & Honest(B) @i & r < i)"

end

Authentication

In this section we show how to formalize the entity authentication properties of Lowe’s hierarchy
of authentication specifications (Lowe 1997) for two-party protocols.
All the properties defined below concern the authentication of an agent in role 'B' to an agent in
role 'A'. To analyze a protocol with respect to these properties we label an appropriate rule in role
A with a Commit(a,b,<'A','B',t>) action and in role B with the Running(b,a,<'A','B',t>)
action. Here a and b are the agent names (public constants) of roles A and B, respectively and t is
a term.

1. Aliveness

A protocol guarantees to an agent a in role A aliveness of another agent b if, whenever a completes
a run of the protocol, apparently with b in role B, then b has previously been running the protocol.

lemma aliveness:
"All a b t #i.
Commit(a,b,t)@i
==> (Ex id #j. Create(b,id) @ j)

| (Ex C #r. Reveal(C) @ r & Honest(C) @ i)"

2. Weak agreement

A protocol guarantees to an agent a in role A weak agreement with another agent b if, whenever
agent a completes a run of the protocol, apparently with b in role B, then b has previously been
running the protocol, apparently with a.

lemma weak_agreement:
"All a b t1 #i.

Commit(a,b,t1) @i
==> (Ex t2 #j. Running(b,a,t2) @j)

| (Ex C #r. Reveal(C) @ r & Honest(C) @ i)"

3. Non-injective agreement

A protocol guarantees to an agent a in role A non-injective agreement with an agent b in role B on
a message t if, whenever a completes a run of the protocol, apparently with b in role B, then b has
previously been running the protocol, apparently with a, and b was acting in role B in his run, and
the two principals agreed on the message t.
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lemma noninjective_agreement:
"All a b t #i.
Commit(a,b,t) @i
==> (Ex #j. Running(b,a,t) @j)

| (Ex C #r. Reveal(C) @ r & Honest(C) @ i)"

4. Injective agreement

We next show the lemma to analyze injective agreement. A protocol guarantees to an agent a in
role A injective agreement with an agent b in role B on a message t if, whenever a completes a
run of the protocol, apparently with b in role B, then b has previously been running the protocol,
apparently with a, and b was acting in role B in his run, and the two principals agreed on the
message t. Additionally, there is a unique matching partner instance for each completed run of an
agent, i.e., for each Commit by an agent there is a unique Running by the supposed partner.

lemma injectiveagreement:
"All A B t #i.
Commit(A,B,t) @i
==> (Ex #j. Running(B,A,t) @j

& j < i
& not (Ex A2 B2 #i2. Commit(A2,B2,t) @i2

& not (#i2 = #i)))
| (Ex C #r. Reveal(C)@r & Honest(C) @i)"

The idea behind injective agreement is to prevent replay attacks. Therefore, new freshness will have
to be involved in each run, meaning the term t must contain such a fresh value.

Accountability

In this section, we give a high-level overview of the accountability framework first proposed by
Künnemann, Esiyok, and Backes (2019) and revised by Morio and Künnemann (2021) that is
implemented in Tamarin.

Accountability in a Nutshell

The accountability definition of Künnemann, Esiyok, and Backes (2019) holds parties of a protocol
accountable for violations of a security property expressed by a trace property . If a violation
occurred, at least one party must have deviated from the protocol. Each party is either honest and
follows the protocol or dishonest and may deviate. An honest party A becomes dishonest when the
event Corrupted(A) occurs in the trace and stays dishonest for the rest of the protocol execution.
A dishonest party does not have to deviate and may behave in a way that is indistinguishable from
its intended behavior.
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The accountability definition focus on parties that are the actual cause of a violation. This requires
protocols to be defined in such a way that deviating parties leave publicly observable evidence
for security violations. In this sense, a protocol provides accountability with respect to a security
property if we can determine all parties for which the fact that they are deviating at all is a cause for
the violation of . The decision of whether all such parties can be detected in a protocol is deferred
to a verdict function, stating which parties should be held accountable, and a set of verification
conditions providing soundness and completeness: If and only if the verification conditions hold with
respect to a security property and verdict function f , the verdict function provides the protocol
with accountability for .

Specifying Accountability in Tamarin

The verdict function and verification conditions do not have to be defined explicitly in Tamarin.
Instead, the implementation adds two new syntactic constructs to Tamarin—case tests and account-
ability lemmas—which define the verdict function and verification conditions implicitly.

Let us first lay down an example protocol to which we can come back to demonstrate the process
of specifying and verifying accountability in Tamarin.

Running Example

We consider a scenario in which access to a central user database is logged. There are two types
of parties involved: managers and employees. Managers can directly access the database, while an
employee needs to be supported by another employee to gain access.

We are interested in holding parties accountable for the case where user data is leaked by either
managers or employees. We model this protocol using multiset-rewrite rules.

The database is abstracted by using a fresh variable for the user data.

rule Database:
[ Fr(~userData) ]

--[ Database(~userData) ]->
[ !DB(~userData) ]

The party identities are represented by public variables. To know if a party is a manager or an
employee, they need to be registered. We use a restriction action to ensure that the type of a party
(manager or employee) is distinct.

rule RegisterManager:
[ In($x) ]

--[ IsManager($x)
, _restrict( not Ex #i. IsEmployee($x)@i ) ]->
[ !Manager($x) ]
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rule RegisterEmployee:
[ In($x) ]

--[ IsEmployee($x)
, _restrict( not Ex #i. IsManager($x)@i ) ]->
[ !Employee($x) ]

A manager can access and leak the user data in the database on its own. Note that the manager
leaking the data has to be corrupted since leaking data is not their normative behavior.

rule ManagerLeak:
[ !Manager($x)
, !DB(~userData) ]

--[ LeakManager($x, ~userData)
, LeakData(~userData)
, Corrupted($x) ]->
[ Out(~userData) ]

Similarly, two employees can access and leak the user data. Again both employees need to be
corrupted and they must be distinct entities.

rule EmployeesLeak:
[ !Employee($x)
, !Employee($y)
, !DB(~userData) ]

--[ LeakEmployees($x, $y, ~userData)
, LeakData(~userData)
, Corrupted($x)
, Corrupted($y)
, _restrict( not ($x = $y) ) ]->
[ Out(~userData) ]

Remark: The protocol allows an unbounded number of participants for each of the two roles and
an unbounded number of (concurrent) sessions. With the example setup, we continue by explaining
case tests.

Case Tests

Case tests are named (trace properties)[#sec:property_specification] with free variables. Each free
variable is instantiated with a party that should be blamed for a violation.

Case tests take the form of

test �name�:
"�formula�"
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where �name� is the name of the case test and “�formula�” its formula. A case test ought to have at
least one free variable and there should be at least one trace where it applies.

In our example, we are interested in holding managers solely and employees jointly accountable for
leaks. Hence, we define two case tests, one for each role:

test leak_manager:
"Ex data #i. LeakManager(m, data)@i"

test leak_employees:
"Ex data #i. LeakEmployees(x, y, data)@i"

Note that the identifiers of the manager (m) and employees (x, y) are free. Intuitively, a case test
may be seen as a specific manifestation or kind of a security violation.

In the following, we may say that a case test matches a trace if there exists some instantiation of
the free variables of the case test, such that the formula holds on the trace. Moreover, we may say
that a case test is single-matching if it is the only case test matching a trace and there exists only
one possible instantiation.

Accountability Lemmas

Accountability lemmas are specified similarly to standard lemmas:

lemma �name�:
�name��,...,�name�� account(s) for "�formula�"

where �name� is the name of the lemma, �name�� to �name�� are the names of previously defined case
tests, and �formula� is the security property.

Coming back to our example, we can state the accountability lemma holding parties accountable
for leaking the user data:

lemma acc:
leak_manager, leak_employees account for

"All data #i. Database(data)@i ==> not Ex #j. LeakData(data)@j"

The complete example can be found here.

Each accountability lemma is translated to a set of (6n+1) standard lemmas where n is the number
of case tests in the lemma. Each generated lemma corresponds to a verification condition in the
accountability framework of (Morio and Künnemann 2021).

When loading our example in Tamarin, the accountability lemma acc is translated into the following
13 regular lemmas:

../code/userdata-leak.spthy
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acc_leak_manager_suff (exists-trace)
acc_leak_employees_suff (exists-trace)
acc_verif_empty (all-traces)
acc_leak_manager_verif_nonempty (all-traces)
acc_leak_employees_verif_nonempty (all-traces)
acc_leak_manager_min (all-traces)
acc_leak_employees_min (all-traces)
acc_leak_manager_uniq (all-traces)
acc_leak_employees_uniq (all-traces)
acc_leak_manager_inj (all-traces)
acc_leak_employees_inj (all-traces)
acc_leak_manager_single (exists-trace)
acc_leak_employees_single (exists-trace)

The naming of the lemmas follows the pattern [acc. lemma name]_[case test name]_[condition],
where condition is one of suff, verif_empty, verif_nonempty, min, uniq, inj, and single.
Let us now get a better intuition for the lemmas. We limit ourselves to the lemmas of the case test
leak_employees as well the lemma acc_verif_empty which is only generated per accountability
lemma. Intuition for the remaining lemmas is obtained by simply switching the roles of managers
and employees in the above explanations.

acc_leak_employees_suff This lemma ensures the existence of a trace in which exactly one pair of
employees and no manager leak the data. Moreover, only the two employees may be corrupted
in the trace.

acc_verif_empty If neither a manager nor employees leak data, no data is leaked.

acc_leak_employees_verif_nonempty If a pair of employees leak data, data is leaked.

acc_leak_employees_min If a pair of employees leak data, there does not exist a prober subset of
them that also leads to a leak.

acc_leak_employees_uniq If a pair of employees leak data, both of them are corrupted.

acc_leak_employees_inj The free variables in leak_employees are instantiated with distinct
values. In this case, this means that the employees are distinct which is ensured by the
restriction in the rule EmployeesLeak.

acc_leak_employees_single This is a simpler version of 'acc_leak_employees_suff where no
requirements on the corrupted parties are made.

Verification of Accountability Lemmas

The generated lemmas can be verified by Tamarin as any other lemma. An accountability lemma is
said to hold for a theory if Tamarin can successfully verify all generated lemmas and the so-called
replacement property holds.
Coming back to our example, we can tell Tamarin to verify the lemmas by executing
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tamarin-prover --prove userdata-leak.spthy

and get the desired result:

acc_leak_manager_suff (exists-trace): verified (4 steps)
acc_leak_employees_suff (exists-trace): verified (5 steps)
acc_verif_empty (all-traces): verified (4 steps)
acc_leak_manager_verif_nonempty (all-traces): verified (4 steps)
acc_leak_employees_verif_nonempty (all-traces): verified (5 steps)
acc_leak_manager_min (all-traces): verified (4 steps)
acc_leak_employees_min (all-traces): verified (20 steps)
acc_leak_manager_uniq (all-traces): verified (2 steps)
acc_leak_employees_uniq (all-traces): verified (4 steps)
acc_leak_manager_inj (all-traces): verified (1 steps)
acc_leak_employees_inj (all-traces): verified (4 steps)
acc_leak_manager_single (exists-trace): verified (4 steps)
acc_leak_employees_single (exists-trace): verified (5 steps)

If we are not so lucky and a lemma is falsified, the originating accountability lemma may still hold.
The following list can help us to better understand the consequences of a falsified lemma and gives
us a hint on how we could solve the problem. Let ct be an arbitrary case test. We leave out the
name of the accountability lemma.

_ct_suff falsified There does not exist a single-matched trace for ct in which only a subset of
the blamed parties is corrupted. At least one party, which is needed to cause a violation, is not
blamed. Accountability may still be provided.
Hint: We assume that _ct_verif_nonempty is verified. If _ct_single is also falsified, then we
should solve this problem first. Otherwise, there exists at least one corrupted party in all single-
matched traces of ct, which is not one of the instantiated free variables of ct. It may be possible
to revise ct by adding additional free variables and action constraints such that all parties needed
for a violation are blamed by ct.

_verif_empty falsified The security property is violated but no case test matches. This indicates
that the case tests are not exhaustive, that is, capture all possible ways to cause a violation.
Accountability is not provided.
Hint: The trace found by Tamarin as a counterexample may give a clue for an additional case test
or shows that the security property can be violated in an unintended way.

_ct_verif_nonempty falsified The case test ct matches but the security property is not violated.
This indicates that there exists a trace where the parties blamed by ct are not sufficient to cause
a violation. Accountability is not provided.
Hint: The trace found by Tamarin as a counterexample may give a clue for revising ct such that
for all traces in which it matches, the security property is violated.
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_ct_min falsified There exists an instantiation of a case test cs in which strictly fewer parties
than in an instantiation of ct in the same trace are blamed. Accountability is not provided.

Hint: We assume that _ct_verif_nonempty and _cs_verif_nonempty are verified. If both ct
and cs are necessary for _verif_empty to be verified, they need to be separated such that they do
not match simultaneously. This can be accomplished by replacing ct with ct � ¬(cs � fv(cs) �
fv(ct)) where fv(c) denotes the free variables of case test c.

_ct_uniq falsified A party is blamed by an instantiation of ct but it has not been corrupted,
thereby holding an honest party accountable. Accountability is not provided.

Hint: We assume _ct_verif_nonempty is verified. If _ct_min is also falsified, we should solve
this problem first. The trace found by Tamarin as a counterexample shows which party is blamed
unwarranted. If the corresponding instantiated free variable can never be corrupted, it can be
quantified in ct to avoid being blamed. If it can be corrupted for some traces, a closer look on ct
and the protocol is necessary.

_ct_single falsified There does not exist a single-matched trace for ct. Either

1. there does not exist a trace where ct matches, or
2. ct always matches with multiple instantiations simultaneously, or
3. for all traces there exists another case test which matches at the time. Accountability may

still be provided.

Hint: We assume _ct_verif_nonempty is verified. In case 1, ct may be ill-defined or contains
a logic error. In case 2, if all the instantiations are permutations of each other, a single-matched
trace may be obtained by making ct antisymmetric. This ensures that whenever the instantiated
free variables of two instantiations are the same, then the instantiations are equivalent. If the
instantiations are not permutations, at least two disjoint groups of parties are always blamed. This
requires a closer look on ct and the protocol. In case 3, it may be possible to merge multiple case
tests together for which then a single-matched trace exists.

_ct_inj falsified The case test ct is not injective. There exists an instantiation mapping distinct
free variables to the same party. Accountability may still be provided.

Hint: ct can be split into multiple case tests for which _inj holds. Assume that fv(ct) = {x,
y, z} and all free variables coincide in any combination. These are given by the partitions of the
free variables:

• {{x, y, z}}
• {{x}, {y, z}}
• {{y}, {x, z}}
• {{z}, {x, y}}
• {{x}, {y}, {z}}
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We then need to split ct into five case tests in which the variables in each group are replaced by a
single variable. For example, in the second case above, we replace each occurrence of y and z by a
new variable v.

Note that for the conditions _ct_suff, _ct_min, and _ct_single we assumed above that the case
tests satisfy _ct_verif_nonempty. If this is not the case, then the case test has a fatal error—it
does not always lead to a violation—which renders the other conditions meaningless

In summary, the consequences of falsified lemmas are shown in the following table, where a �
indicates that accountability is not provided and a (�) that accountability may still be provided.

Falsified lemma Accountability provided
_ct_suff (�)
_verif_empty �
_ct_verif_nonempty �
_ct_min �
_ct_uniq �
_ct_single (�)
_ct_inj (�)

Replacement Property

The replacement property (RP) is used to ensure that there is a decomposition of each trace that
separates interleaving causally relevant events so they can be regarded in isolation. Intuitively, RP
says that when we have a single-matched trace for a case test (ensured by ’_single‘), then we can
replace its parties by any other parties allowed by the theory.

Let us consider an example to better understand what this means in practice.

test A:
"Ex #i. A(x, y)@i

test B:
"Ex #i. B(x, y)@i

We have two case tests A and B each blaming the two parties (free variables) x and y. Assume that
there exist the following traces in our theory:

t1 = A('S', 'T'); B('S', 'T')
t2 = B('C', 'D')

In t1 both case test A and B match with the instantiation [x → 'S', y → 'T]. In t2 only case test
‘B’ matches with the instantiation [x → 'C', y → 'D']. The replacement property now requires
that there exists a trace t3 in which only case test B matches with its instantiation from t1:
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t3 = B('S', 'T')

In fact, we replaced the parties of B in t2 with the parties of B in t1. Observe that this is the reason
why the _inj lemma is necessary. We can see the replacement as first applying the inverse instan-
tiation of the single-matched trace (here in t2 with ['C' → x, 'D' → y]) and then applying
the instantiation of the other (possibly multi-matched) trace (here in't1 with [x →
'S', y → 'T]).

A sufficient criterion implying RP is that traces are closed under bijective renaming. The imple-
mentation features a coarse syntactical check by ensuring that

1. the theory includes no restriction,
2. the theory uses no public names, and
3. the free variables of case tests can only be instantiated by public variables.

If any of these conditions is not satisfied, a wellformedness warning is shown stating that RP has
to be checked manually.

Note that in our example, when executing Tamarin to verify the lemmas, we get such a warning:

The specification contains at least one restriction.

Hence, we need to ensure that the restrictions do not limit our ability to rename parties. Our theory
contains three restrictions. Two for ensuring that managers and employees are distinct and one for
ensuring that an employee cannot take a double role when leaking data:

restriction Restr_RegisterManager_1:
"� x #NOW.
(Restr_RegisterManager_1( x ) @ #NOW) � (¬(� #i. IsEmployee( x ) @ #i))"

restriction Restr_RegisterEmployee_1:
"� x #NOW.
(Restr_RegisterEmployee_1( x ) @ #NOW) � (¬(� #i. IsManager( x ) @ #i))"

restriction Restr_EmployeeLeak_1:
"� x #NOW x.1. (Restr_EmployeeLeak_1( x, x.1 ) @ #NOW) � (¬(x = x.1))"

In the first two cases, if we have a single-matched trace where some manager or employee registers
and their role is distinct, then that is also the case when we rename the party in any conceivable
way. There is no possibility of a role to lose their distinctiveness due to the absence of public names.
In the third case, when two employees are distinct in one trace, they remain distinct after bijective
renaming. So in our example, the restrictions are unproblematic for RP and our verification result
is valid.
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Precomputation: refining sources

In this section, we will explain some of the aspects of the precomputation performed by Tamarin.
This is relevant for users that model complex protocols since they may at some point run into
so-called remaining partial deconstructions, which can be problematic for verification.

To illustrate the concepts, consider the example of the Needham-Schroeder-Lowe Public Key Pro-
tocol, given here in Alice&Bob notation:

protocol NSLPK3 {
1. I -> R: {'1',ni,I}pk(R)
2. I <- R: {'2',ni,nr,R}pk(I)
3. I -> R: {'3',nr}pk(R)

}

It is specified in Tamarin by the following rules:

rule Register_pk:
[ Fr(~ltkA) ]
-->
[ !Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA)) ]

rule Reveal_ltk:
[ !Ltk(A, ltkA) ] --[ RevLtk(A) ]-> [ Out(ltkA) ]

rule I_1:
let m1 = aenc{'1', ~ni, $I}pkR
in
[ Fr(~ni), !Pk($R, pkR) ]

--[ OUT_I_1(m1)]->
[ Out( m1 ), St_I_1($I, $R, ~ni)]

rule R_1:
let m1 = aenc{'1', ni, I}pk(ltkR)

m2 = aenc{'2', ni, ~nr, $R}pkI
in
[ !Ltk($R, ltkR), In( m1 ), !Pk(I, pkI), Fr(~nr)]

--[ IN_R_1_ni( ni, m1 ), OUT_R_1( m2 ), Running(I, $R, <'init',ni,~nr>)]->
[ Out( m2 ), St_R_1($R, I, ni, ~nr) ]
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rule I_2:
let m2 = aenc{'2', ni, nr, R}pk(ltkI)

m3 = aenc{'3', nr}pkR
in

[ St_I_1(I, R, ni), !Ltk(I, ltkI), In( m2 ), !Pk(R, pkR) ]
--[ IN_I_2_nr( nr, m2), Commit(I, R, <'init',ni,nr>), Running(R, I,

<'resp',ni,nr>) ]->↪→

[ Out( m3 ), Secret(I,R,nr), Secret(I,R,ni) ]

rule R_2:
[ St_R_1(R, I, ni, nr), !Ltk(R, ltkR), In( aenc{'3', nr}pk(ltkR) ) ]

--[ Commit(R, I, <'resp',ni,nr>)]->
[ Secret(R,I,nr), Secret(R,I,ni) ]

rule Secrecy_claim:
[ Secret(A, B, m) ] --[ Secret(A, B, m) ]-> []

We now want to prove the following lemma:

lemma nonce_secrecy:
" /* It cannot be that */

not(
Ex A B s #i.
/* somebody claims to have setup a shared secret, */
Secret(A, B, s) @ i
/* but the adversary knows it */

& (Ex #j. K(s) @ j)
/* without having performed a long-term key reveal. */

& not (Ex #r. RevLtk(A) @ r)
& not (Ex #r. RevLtk(B) @ r)
)"

This proof attempt will not terminate due to there being 12 partial deconstructions left
when looking at this example in the GUI as described in detail below. The number of partial decon-
structions is also visible without GUI when using the command line parameter --precompute-only.
On this example, running Tamarin using --precompute-only results in the following output:

Multiset rewriting rules: 9
Raw sources: 11 cases, 12 partial deconstructions left
Refined sources: 11 cases, 12 partial deconstructions left
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Partial deconstructions left

In the precomputation phase, Tamarin goes through all rules and inspects their premises. For each
of these facts, Tamarin will precompute a set of possible sources. Each such source represents
combinations of rules from which the fact could be obtained. For each fact, this leads to a set of
possible sources and we refer to these sets as the raw sources, respectively refined sources.

However, for some rules Tamarin cannot resolve where a fact must have come from. We say that a
partial deconstruction is left in the raw sources, and we will explain them in more detail below.

The existence of such partial deconstructions complicates automated proof generation and often
(but not always) means that no proof will be found automatically. For this reason, it is useful for
users to be able to find these and examine if it is possible to remove them.

In the interactive mode you can find such partial deconstructions as follows. On the top left, under
“Raw sources”, one can find the precomputed sources by Tamarin.

Cases with partial deconstructions will be listed with the text (partial deconstructions) after
the case name. The partial deconstructions can be identified by light green arrows in the graph, as
in the following example:
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The green arrow indicates that Tamarin cannot exclude the possibility that the adversary can derive
any fresh term ~t.1 with this rule I_2. As we are using an untyped protocol model, the tool cannot
determine that nr.7 should be a fresh nonce, but that it could be any message. For this reason
Tamarin concludes that it can derive any message with this rule.

Why partial deconstructions complicate proofs

To get a better understanding of the problem, consider what happens if we try to prove the lemma
nonce_secrecy. If we manually always choose the first case for the proof, we can see that Tamarin
derives the secret key to decrypt the output of rule I_2 by repeatedly using this rule I_2. More
specifically, in a) the output of rule I_2 is decrypted by the adversary. To get the relevant key for
this, in part b) again the output from rule I_2 is decrypted by the adversary. This is done with a
key coming from part c) where the same will happen repeatedly.

As Tamarin is unable to conclude that the secret key could not have come from the rule I_2, the
algorithm derives the secret key that is needed. The proof uses the same strategy recursively but
will not terminate.
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Using Sources Lemmas to Mitigate Partial Deconstructions

Once we identified the rules and cases in which partial deconstructions occur, we can try to avoid
them. A good mechanism to get rid of partial deconstructions is the use of so-called sources lemmas.

Sources lemmas are a special case of lemmas, and are applied during Tamarin’s pre-computation.
Roughly, verification in Tamarin involves the following steps:

1. Tamarin first determines the possible sources of all premises. We call these the raw sources.

2. Next, automatic proof mode is used to discharge any sources lemmas using induction.

3. The sources lemmas are applied to the raw sources, yielding a new set of sources, which we
call the refined sources.

4. Depending on the mode, the other (non-sources) lemmas are now considered manually or
automatically using the refined sources.

For full technical details, we refer the reader to (Meier 2012), where these are called type assertions.

In our example, we can add the following lemma:

lemma types [sources]:
" (All ni m1 #i.

IN_R_1_ni( ni, m1) @ i
==>
( (Ex #j. KU(ni) @ j & j < i)
| (Ex #j. OUT_I_1( m1 ) @ j & j < i)
)

)
& (All nr m2 #i.

IN_I_2_nr( nr, m2) @ i
==>
( (Ex #j. KU(nr) @ j & j < i)
| (Ex #j. OUT_R_1( m2 ) @ j & j < i)
)

)
"

This sources lemma is applied to the raw sources to compute the refined sources. All non-sources
lemmas are proven with the resulting refined sources, while sources lemmas must be proved with
the raw sources.

This lemma relates the point of instantiation to the point of sending by either the adversary or
the communicating partner. In other words, it says that whenever the responder receives the first
nonce, then prior to that moment either the nonce was known to the adversary or the initiator had
sent the first message. Similarly, the second part states that whenever the initiator receives the
second message, then prior to that moment either the adversary knew the corresponding nonce or
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the responder had sent the second message. Generally, in a protocol with partial deconstructions
left it is advisable to try if the problem can be solved by a sources lemma that considers where
a term could be coming from. As in the above example, one idea to do so is by stating that a
used term must either have occurred in one of a list of rules before, or it must have come from the
adversary.

The above sources lemma can be automatically proven by Tamarin. With the sources lemma,
Tamarin can then automatically prove the lemma nonce_secrecy.

Another possibility is that the partial deconstructions only occur in an undesired application of a
rule that we do not wish to consider in our model. In such a case, we can explicitly exclude this
application of the rule with a restriction. But, we should ensure that the resulting model is the one
we want; so use this with care.

Modelling tricks to Mitigate Partial Deconstructions

Sometimes partial deconstructions can be removed by applying some modelling tricks:

1. If the deconstruction reveals a term t that, intuitively, can be made public anyway, you can
add In(t) to the lhs of the rule. If you are not sure if this transformation is sound, you may
write a lemma to ensure that the rule can still fire.
Example: Hashes of a public value are public knowledge, so adding In(p) to the second rule
helps here:

[] --> [HashChain('hi')]

[HashChain(p)] --> [HashChain(h(p)), Out(h(p))]

2. Give fresh or public type if you know some values are atomic, but you see that pre-computation
tries to deduce non-atomic terms from them. This works only under the assumption that the
implementation can enforce the correct assignment, e.g., by appropriate tagging.

3. Using pattern matching instead of destructor functions can help distill the main argument of
a proof in the design phase or in first stages of modelling. It is valid, and often successful
strategy to start with a simplistic modelling and formulate provable lemmas first, and then
proceed to refine the model step by step.

Auto-Sources

Tamarin can also try to automatically generate sources lemmas (Cortier, Delaune, and Dreier
2020). To enable this feature, Tamarin needs to be started using the command line parameter
--auto-sources.

When Tamarin is called using --auto-sources, it will check, for each theory it loads, whether the
theory contains partial deconstructions, and whether there is a sources lemma. If there are partial
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deconstructions and there is no sources lemma, it will try to automatically generate a suitable
lemma, called AUTO_typing, and added to the theory’s list of lemmas.
This works in many cases, note however that there is no guarantee that the generated lemma is (i)
sufficient to remove all partial deconstructions and (ii) correct - so you still need to check whether
all partial deconstructions are resolved, and to prove the lemma’s correctness in Tamarin, as usual.
Cases where Tamarin may fail to generate a sufficient or correct sources lemma include in par-
ticular theories using non subterm convergent equations or AC symbols, or cases where partial
deconstruction stem from state facts rather than inputs and outputs.
To be able to add the sources lemma, Tamarin needs to modify the protocol rules of the loaded
theory in two ways:

1. By adding the necessary annotations which will be used in the lemma to the protocol rules.
All added annotations start with AUTO_IN_ or AUTO_OUT_, and can be seen, e.g., by clicking on
Multiset rewriting rules in interactive mode. Note that these annotations are by default
hidden in the graphs in interactive mode, except during the proof of the sources lemma, to
reduce the size of the graphs. One can manually make them visible or invisible using the
Options button on the top right of the page.

2. By splitting protocol rules into their variants w.r.t. the equational theory, if these variants
exists. This is necessary to be able to place the annotations. When exporting such a theory
from Tamarin using, e.g., the Download button in the interactive mode, Tamarin will export
the rule(s) together with their (annotated) variants, which can be re-imported as usual.

Limiting Precomputations

Sometimes Tamarin’s precomputations can take a long time, in particular if there are many open
chains or the saturation of sources grows too quickly.
In such a case two command line flags can be used to limit the precomputations:

• --open-chains=X or -c=X, where X is a positive integer, limits the number of chain constraints
Tamarin will solve during precomputations. In particular, this value stops Tamarin from
solving any deconstruction chains that are longer than the given value X. This is useful as some
equational theories can cause loops when solving deconstruction chains. At the same time,
some equational theories may need larger values (without looping), in which case it can be
necessary to increase this value. However, a too small value can lead to sources that contain
open deconstruction chains which would be easy to solve, rendering the precomputations
inefficient. Tamarin shows a warning on the command line when this limit is reached. Default
value: 10

• --saturation=X or --s=X, where X is a positive integer, limits the number of saturation
steps Tamarin will do during precomputations. In a nutshell, Tamarin first computes sources
independently, and then saturates them (i.e., applies each source to all other sources if possible)
to increase overall efficiency. However, this can sometimes grow very quickly, in which case
it might be necessary to fix a smaller value. Tamarin shows a warning on the command line
when this limit is reached. Default value: 5
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In case Tamarin’s precomputations take too long, try fixing smaller values for both parameters, and
analyze the sources shown in interactive mode to understand what exactly caused the problem.

Loop breakers

During the precomputation phase, Tamarin determines a minimal set of ‘loop-breakers’, which are
premises that can be excluded from the general precomputation of all premise goals to prevent
looping. Specifically, the set of loop breakers is a minimal set of premises that can be excluded to
make the directed graph of rules, when connected from conclusions to premises, acyclic.

It is important to note that there is often no unique minimal set of loop-breakers. The loop-breaker
computation is deterministic for a given set of rules, but a change to the set of rules may result in
different premises being considered loop-breakers. As such, you may find that a small change or
addition of a rule to your model can result in changes to how some seemingly unrelated properties
are solved.

It is possible to manually break loops in particular places by annotating the relevant premise with
the no_precomp annotation. These premises will then be excluded when computing loop-breakers
over the rule set, and will not have their sources precomputed. For more on fact annotations, see
Fact Annotations.

Modeling Issues

First-time users

In this section we discuss some problems that a first-time user might face. This includes error
messages and how one might fix them. We also discuss how certain ‘sanity’ lemmas can be proven
to provide some confidence in the protocol specification.

To illustrate these concepts, consider the following protocol, where an initiator $I and a receiver
$R share a symmetric key ~k. $I then sends the message ~m, encrypted with their shared key ~k to
$R.

builtins: symmetric-encryption

/* protocol */

rule setup:
[ Fr(~k), Fr(~m) ]
--[]->
[ AgSt($I,<~k,~m>), AgSt($R,~k) ]

rule I_1:
[ AgSt($I,<~k,~m>) ]
--[ Send($I,~m) ]->
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[ Out(senc(~m,~k)) ]

rule R_1:
[ AgSt($R,~k), In(senc(m,~k)) ]
--[ Receive($R,m), Secret(m) ]->
[ ]

lemma nonce_secret:
"All m #i #j. Secret(m) @i & K(m) @j ==> F"

With the lemma nonce_secret, we examine if the message is secret from the receiver’s perspective.

Exist-Trace Lemmas

Imagine that in the setup rule you forgot the agent state fact for the receiver AgSt($R,~k) as
follows:

// WARNING: this rule illustrates a non-functional protocol
rule setup:

[ Fr(~k), Fr(~m) ]
--[]->
[ AgSt($I,<~k,~m>) ]

With this omission, Tamarin verifies the lemma nonce_secret. The lemma says that whenever
the action Secret(m) is reached in a trace, then the adversary does not learn m. However, in the
modified specification, the rule R_1 will never be executed. Consequently there will never be an
action Secret(m) in the trace. For this reason, the lemma is vacuously true and verifying the
lemma does not mean that the intended protocol has this property. To avoid proving lemmas in
such degenerate ways, we first prove exist-trace lemmas.

With an exist-trace lemma, we prove, in essence, that our protocol can be executed. In the above
example, the goal is that first an initiator sends a message and that then the receiver receives the
same message. We express this as follows:

lemma functional: exists-trace
"Ex I R m #i #j.

Send(I,m) @i
& Receive(R,m) @j "

If we try to prove this with Tamarin in the model with the error, the lemma statement will be
falsified. This indicates that there exists no trace where the initiator sends a message to the
receiver. Such errors arise, for example, when we forget to add a fact that connects several rules
and some rules can never be reached. Generally it is recommended first to prove an exists-trace
lemma before other properties are examined.
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Error Messages

In this section, we review common error messages produced by Tamarin. To this end, we will
intentionally add mistakes to the above protocol, presenting a modified rule and explaining the
corresponding error message.

Inconsistent Fact usage

First we change the setup rule as follows:

// WARNING: this rule illustrates an error message
rule setup:

[ Fr(~k), Fr(~m) ]
--[]->
[ AgSt($I,~k,~m), AgSt($R,~k) ]

Note that the first AgSt(...) in the conclusion has arity three, with variables $I,~k,~m, rather
than the original arity two, with variables $I,<~k,~m> where the second argument is paired.

The following statement that some wellformedness check failed will appear at the very end of the
text when loading this theory.

WARNING: 1 wellformedness check failed!

Such a wellformedness warning appears in many different error messages at the bottom and indicates
that there might be a problem. However, to get further information, one must scroll up in the
command line to look at the more detailed error messages.

/*
WARNING: the following wellformedness checks failed!

Fact usage
==========

Possible reasons:
1. Fact names are case-sensitive, different capitalizations are considered as different facts, i.e., Fact() is different from FAct(). Check the capitalization of your fact names.
2. Same fact is used with different arities, i.e., Fact('A','B') is different from Fact('A'). Check the arguments of your facts.

Fact `agst':

1. Rule `setup', capitalization "AgSt", 2, Linear
AgSt( $R, ~k )

2. Rule `setup', capitalization "AgSt", 3, Linear
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AgSt( $I, ~k, ~m )
*/

The problem lists all the fact usages of fact AgSt. The statement 1. Rule 'setup',
capitalization "AgSt", 2, Linear means that in the rule setup the fact AgSt is used
as a linear fact with 2 arguments. This is not consistent with its use in other rules. For example
2. Rule 'setup', capitalization "AgSt", 3, Linear indicates that it is also used with 3
arguments in the setup rule. To solve this problem we must ensure that we only use the same fact
with the same number of arguments.

Unbound variables

If we change the rule R_1 to

// WARNING: this rule illustrates an error message
rule R_1:

[ AgSt($R,~k), In(senc(~m,~k)) ]
--[ Receive($R,$I,~m), Secret($R,~n) ]->
[ ]

we get the error message

/*
WARNING: the following wellformedness checks failed!

Unbound variables
=================

rule `R_1' has unbound variables:
~n

*/

The warning unbound variables indicates that there is a term, here the fresh ~n, in the action
or conclusion that never appeared in the premise. Here this is the case because we mistyped ~n
instead of ~m. Generally, when such a warning appears, you should check that all the fresh variables
already occur in the premise. If it is a fresh variable that appears for the first time in this rule, a
Fr(~n) fact should be added to the premise.

Free Term in formula

Next, we change the functional lemma as follows
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// WARNING: this lemma illustrates an error message
lemma functional: exists-trace

"Ex I R #i #j.
Send(I,R,m) @i
& Receive(R,I,m) @j "

This causes the following warning:

/*
WARNING: the following wellformedness checks failed!

Formula terms
=============

lemma `functional' uses terms of the wrong form: `Free m', `Free m'

The only allowed terms are public names and bound node and message
variables. If you encounter free message variables, then you might
have forgotten a #-prefix. Sort prefixes can only be dropped where
this is unambiguous. Moreover, reducible function symbols are
disallowed.
*/

The warning indicates that in this lemma the term m occurs free. This means that it is not bound
to any quantifier. Often such an error occurs when one forgets to list all the variables that are used
in the formula after the Ex or All quantifier. In our example, the problem occurred because we
deleted the m in Ex I R m #i #j.

Undefined Action Fact in Lemma

Next, we change the lemma nonce_secret.

// WARNING: this lemma illustrates an error message
lemma nonce_secret:

"All R m #i #j. Secr(R,m) @i & K(m) @j ==> F"

We get the following warning:

/*
WARNING: the following wellformedness checks failed!

Inexistant lemma actions
========================
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lemma `nonce_secret' references action
fact "Secr" (arity 2, Linear)

but no rule has such an action.
*/

Such a warning always occurs when a lemma uses a fact that never appears as an action fact in any
rule. The cause of this is either that the fact is spelled differently (here Secr instead of Secret) or
that one forgot to add the action fact to the protocol rules. Generally, it is good practice to double
check that the facts that are used in the lemmas appear in the relevant protocol rules as actions.

Undeclared function symbols

If we omit the line

builtins: symmetric-encryption

the following warning will be output

unexpected "("
expecting letter or digit, ".", "," or ")"

The warning indicates that Tamarin did not expect opening brackets. This means that a function
is used that Tamarin does not recognize. This can be the case if a function f is used that has not
been declared with functions: f/1. Also, this warning occurs when a built-in function is used
but not declared. In this example, the problem arises because we used the symmetric encryption
senc, but omitted the line where we declare that we use this built-in function.

Inconsistent sorts

If we change the setup rule to

// WARNING: this rule illustrates an error message
rule setup:

[ Fr(~k), Fr(~m) ]
--[]->
[ AgSt($I,<~k,m>), AgSt($R,~k) ]

we get the error message

/*
Unbound variables
=================
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rule `setup' has unbound variables:
m

Variable with mismatching sorts or capitalization
=================================================

Possible reasons:
1. Identifiers are case sensitive, i.e.,'x' and 'X' are considered to be different.
2. The same holds for sorts:, i.e., '$x', 'x', and '~x' are considered to be different.

rule `setup':
1. ~m, m

*/

This indicates that the sorts of a message were inconsistently used. In the rule setup, this is the
case because we used m once as a fresh value ~m and another time without the ~.

Subterm Convergence Warning

The equational theory used by Tamarin must always be convergent, meaning that any sequence of
rewriting steps must eventually terminate, and have the finite variant property. Tamarin verifies
if the equational theory is subterm convergent. If it is subterm convergent, it is guaranteed to
be convergent an to have the finite variant property. However, if it is not subterm convergent, it
does not necessarily imply non-convergence; it only indicates a potential risk of non-convergence.
Non-convergence of an equation can result in infinite loops or incorrect results.

An equation is subterm convergent if the right-hand side is a constant (such as true or false) or a
subterm of the left-hand side. For instance, the equation f(g(x)) = x is subterm convergent since
the right-hand side is a subterm of the left-hand side. Conversely, the equation f(x) = g(x) is not
subterm convergent.

Consider the following example from the warning:

/*
Subterm Convergence Warning
===========================

User-defined equations must be convergent and have the finite variant property. The following equations are not subterm convergent. If you are sure that the set of equations is nevertheless convergent and has the finite variant property, you can ignore this warning and continue

unblind(sign(blind(m, r), sk), r) = sign(m, sk)

For more information, please refer to the manual : https://tamarin-prover.com/manual/master/book/010_modeling-issues.html
*/

If you are sure that your equational theory is convergent and has the finite variant theory you can
deactivate the warning using the annotation convergent as follows:
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equations [convergent]: ...

Message derivation errors

It is good modelling practice to write our rules in such a way that they do not give participants
any additional capabilities, and modify the equational theory for the express purpose of modifying
capabilities. Using rules for this is ill-advised, as it is easy to unintentionally make a protocol
not adhere to an underlying model or make the adversary weaker than intended. Because of this,
Tamarin automatically checks if any rules may introduce such capabilities.

Consider for example what happens if we change the rule R_1 to

// WARNING: this rule illustrates an error message
rule R_1:

[ In(senc(m,~k)) ]
--[ Receive($R,m), Secret(m) ]->
[ Out(m) ]

we get the error message

/*
Message Derivation Checks
=========================

The variables of the following rule(s) are not derivable from their premises, you may be performing unintended pattern matching.

Rule R_1:
Failed to derive Variable(s): ~k, m
*/

This warning indicates that in the rule R_1, we introduce additional capabilities, namely, the deriva-
tion of both ~k and m.

If this is intentional, the rule can be annotated with [no_derivcheck], which will make Tamarin
ignore that rule during derivation checks. The behaviour of these derivation checks can be further
modified with the --derivcheck-timeout (or -d) flag. By default, it is set to a value of 5 seconds.
Setting it to 0 disables derivation checks.

What to do when Tamarin does not terminate

Tamarin may fail to terminate when it automatically constructs proofs. One reason for this is that
there are open chains. For advice on how to find and remove open chains, see open chains.
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Advanced Features

We now turn to some of Tamarin’s more advanced features. We cover custom heuristics, the GUI,
channel models, induction, internal preprocessor, and how to measure the time needed for proofs.

Heuristics

A heuristic describes a method to rank the open constraints of a constraint system and is specified
as a sequence of proof method rankings. Each proof method ranking is abbreviated by a single
character from the set {s,S,c,C,i,I,o,O}.

A global heuristic for a protocol file can be defined using the heuristic: statement followed by
the sequence of proof method rankings. The heuristic which is used for a particular lemma can be
overwritten using the heuristic lemma attribute. Finally, the heuristic can be specified using the
--heuristic command line option.
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The precedence of heuristics is:

1. Command line option (--heuristic)
2. Lemma attribute (heuristic=)
3. Global (heuristic:)
4. Default (s)

The proof method rankings are as follows.

s: the ‘smart’ ranking is the ranking described in the extended version of our CSF’12 paper. It is
the default ranking and works very well in a wide range of situations. Roughly, this ranking
prioritizes chain constraints, disjunctions, facts, actions, and adversary knowledge of private
and fresh terms in that order (e.g., every action will be solved before any knowledge constraint).
Constraints marked ‘Probably Constructable’ and ‘Currently Deducible’ in the GUI are lower
priority.

S: is like the ‘smart’ ranking, but does not delay the solving of premises marked as loop-breakers.
What premises are loop breakers is determined from the protocol using a simple under-
approximation to the vertex feedback set of the conclusion-may-unify-to-premise graph. We
require these loop-breakers for example to guarantee the termination of the case distinction
precomputation. You can inspect which premises are marked as loop breakers in the ‘Multiset
rewriting rules’ page in the GUI.

c: is the ‘consecutive’ or ‘conservative’ ranking. It solves constraints in the order they occur in the
constraint system. This guarantees that no constraint is delayed indefinitely, but often leads
to large proofs because some of the early constraints are not worth solving.

C: is like ‘c’ but without delaying loop breakers.
i: is a ranking developed to be well-suited to injective stateful protocols. The priority of proof

methods is similar to the ‘S’ ranking, but instead of a strict priority hierarchy, the fact,
action, and knowledge constraints are considered equal priority and solved by their age. This
is useful for stateful protocols with an unbounded number of runs, in which for example
solving a fact constraint may create a new fact constraint for the previous protocol run. This
ranking will prioritize existing fact, action, and knowledge constraints before following up on
the fact constraint of that previous run. In contrast the ‘S’ ranking would prioritize this new
fact constraint ahead of any existing action or knowledge constraint, although solving the new
constraint may create yet another earlier fact constraint and so on, preventing termination.

I: is like ‘i’ but without delaying loop breakers.
{.}: is the tactic ranking. It allows the user to provide an arbitrary ranking for the proof methods,

specified in a language native to Tamarin. Each tactic needs to be given a name. For the
tactic named default, the call would be {default}. The syntax of the tactics will be detailed
below in the part Using a tactic. However, for a quick overview, a tactic is composed of
several fields. The first one, tactic, specifies the name of the tactic and is mandatory. Then
presort (optional) allows the user to choose the base ranking of the input. The keywords
prio and deprio defines the ranks of the proof methods. They gather functions that will
recognize the constraints. The higher the prio that recognizes a constraint, the sooner it will
be treated and the lower the deprio, the later. The user can choose to write as much of prio
or deprio as needed. A tactic can also be composed of only prio or deprio. The functions
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are preimplemented and allow to reach information unavailable from oracle (the state of the
system or the proof context).

o: is the oracle ranking. It allows the user to provide an arbitrary program that runs indepen-
dently of Tamarin and ranks the proof methods. The path of the program can be speci-
fied after the proof method ranking, e.g., o "oracles/oracle-default" to use the program
oracles/oracle-default as the oracle. If no path is specified, the default is oracle. The
path of the program is relative to the directory of the protocol file containing the proof
method ranking. If the heuristic is specified using the --heuristic option, the path can be
given using the --oraclename command line option. In this case, the path is relative to the
current working directory. The oracle’s input is a numbered list of proof methods, given in
the ‘Consecutive’ ranking (as generated by the heuristic C). Every line of the input is a new
constraint and starts with “%i:”, where %i is the index of the constraint. The oracle’s output
is expected to be a line-separated list of indices, prioritizing the given proof methods. Note
that it suffices to output the index of a single proof method, as the first ranked proof method
will always be selected. Moreover, the oracle is also allowed to terminate without printing a
valid index. In this case, the first proof method of the ‘Consecutive’ ranking will be selected.

O: is the oracle ranking based on the ‘smart’ heuristic s. It works the same as o but uses ‘smart’
instead of ‘Consecutive’ ranking to start with.

p: is the SAPIC-specific ranking. It is a modified version of the smart s heuristic, but resolves
SAPIC’s state-facts right away, as well as Unlock constraints, and some helper facts intro-
duced in SAPICs translation (MID_Receiver, MID_Sender). Progress_To constraints (which
are generated when using the optional local progress) are also prioritised. Similar to fact
annotations below, this ranking also introduces a prioritisation for Insert-actions When the
first element of the key is prefixed F_, the key is prioritized, e.g., lookup <F_key,p> as v in
.... Using L_ instead of F_ achieves deprioritsation. Likewise, names and be (de)prioritized
by prefixes them in the same manner. See (Kremer and Künnemann 2016) for the reasoning
behind this ranking.

P: is like p but without delaying loop breakers.

If several rankings are given for the heuristic flag, then they are employed in a round-robin fashion
depending on the proof-depth. For example, a flag --heuristic=ssC always uses two times the
smart ranking and then once the ‘Consecutive’ proof method ranking. The idea is that you can
mix proof method rankings easily in this way.

Fact annotations

Facts can be annotated with + or - to influence their priority in heuristics. Annotating a fact with
+ causes the tool to solve instances of that fact earlier than normal, while annotating a fact with
- will delay solving those instances. A fact can be annotated by suffixing it with the annotation
in square brackets. For example, a fact F(x)[+] will be prioritized, while a fact G(x)[-] will be
delayed.

Fact annotations apply only to the instances that are annotated, and are not considered during
unification. For example, a rule premise containing A(x)[+] can unify with a rule conclusion
containing A(x). This allows multiple instances of the same fact to be solved with different priorities
by annotating them differently.
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When an In() premise is annotated, the annotations are propagated up to the corresponding
!KU() goals. For example, the premise In(f(x))[+] will generate a !KU(f(x))[+] goal that will
be solved with high priority, while the premise In(<y,g(y,z)>)[-] will generate !KU(y)[-] and
!KU(g(y,z))[-] goals to be solved with low priority.

The + and - annotations can also be used to prioritize actions. For example, A reusable lemma of
the form

"All x #i #j. A(x) @ i ==> B(x)[+] @ j"

will cause the B(x)[+] actions created when applying this lemma to be solved with higher priority.

Heuristic priority can also be influenced by starting a fact name with F_ (for first) or L_ (for last)
corresponding to the + and - annotations respectively. Note however that these prefixes must apply
to every instance of the fact, as a fact F_A(x) cannot unify with a fact A(x).

Facts in rule premises can also be annotated with no_precomp to prevent the tool from precomputing
their sources, and to prevent them from being considered during the computation of loop-breakers.
Use of the no_precomp annotation allows the modeller to manually control how loops are broken,
or can be used to reduce the precomputation time required to load large models. Note, however
that preventing the precomputation of sources for a premise that is solved frequently will typically
slow down the tool, as there will be no precomputed sources to apply. Using this annotation
may also cause partial deconstructions if the source of a premise was necessary to compute a full
deconstruction.

The no_precomp annotation can be used in combination with heuristic annotations by including
both separated by commas—e.g., a premise A(x)[-,no_precomp] will be delayed and also will not
have its sources precomputed.

Using a Tactic {subsec: tactic}

The tactics are a language native to Tamarin designed to allow user to write custom rankings of
proof methods.

Writing a tactic In order to explain the way a tactic should be written, we will use the simple
example (theory SourceOfUniqueness). The first step is to identify the tactic by giving it a name
(here uniqueness). Then you can choose a presort. It has the same role as the c or C option but
with more options. Depending on whether you are using the diff mode are not, you will respectively
be able to choose among ‘s’, ‘S’, ‘c’ and ‘C’ and ‘C’, ‘I’, ‘P’, ‘S’, ‘c’, ‘i’, ‘p’, ‘s’. Note that this field
is optional and will by default be set at s.

tactic: uniqueness
presort: C

Then we will start to write the priorities following which we want to order the proof methods.
Every priority, announced by the prio keywords, is composed of functions that will try to recognize
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characteristics in the proof methods given by Tamarin. If a proof method is recognized by a function
in a priority, it will be be ranked as such, i.e., the higher the priority in the tactic, the higher the
proof methods it recognizes will be ranked. The particularity recognized by every function will be
detailed in a paragraph below. The tactic language authorizes to combine functions using |, & and
not. Even if the option is not necessary for the proof of the lemma uniqueness, let’s now explore
the deprio keyword. It works as the prio one but with the opposite goal since it allows the user
to put the recognized proof methods at the bottom of the ranking. In case several deprio are
written, the first one will be ranked higher than the last ones. If a proof method is recognized by
two or more ‘priorities’ or ‘depriorities’, only the first one (i.e., the higher rank possible) will be
taken into account for the final ranking. The order of the proof methods recognized by the same
priority is usually predetermined by the presort. However, if this order is not appropriate for one
priority, the user can call a ‘postranking function’. This function will reorder the proof methods
inside the priority given a criteria. If no postranking function is determined, Tamarin will use the
identity. For now, the only other option is smallest, a function that will order the proof methods
by increasing size of their pretty-printed strings.

prio:
isFactName "ReceiverKeySimple"

prio:
regex "senc\(xsimple" | regex "senc\(~xsimple"

prio: {smallest}
regex "KU\( ~key"

}

Calling a tactic Like the other heuristics, tactics can be called two ways. The first one
is using the command line. In the case study above, it would be: tamarin-prover --prove
--heuristic={prove=uniqueness} SourceOfUniqueness.spthy. The other way is directly
integrated in the file by adding [heuristic={uniqueness}] next to the name of the lemma that
is supposed to use it. The option does not need to be called again from the command line. The
second option is helpful when working with a file containing several tactics used by different
lemmas.

Ranking functions The functions used in the tactic language are implemented in Tamarin.
Below you can find a list of the currently available functions. At the end at this section, you will
find an explanation on how to write your own functions if the one described here do not suffice for
your usage.

Pre-implemented functions * regex: as explain above, this function takes in parameter a string
and will use it as a pattern to match against the proof methods. (Since it is based on the
Text.Regex.PCRE module of Haskell, some characters, as the parenthesis, will need to be escaped
to achieve the desired behavior). * isFactName: as is given by its name, this function will go look
in the Tamarin object ‘goal’ and check if the field FactName matches its parameter. To give an
example of its usage, isFactName could be used instead of regex for the first prio of the above
example with same results. * isInFactTerms: the function will look in the list contained in the field
FactTest whether an element corresponding the parameter can be found. The following functions
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are also implemented but specifically designed to translate the oracles of the Vacarme tool into
tactics: * dhreNoise: recognize constraints containing a Diffie-Hellman exponentiation. For exam-
ple, the constraint Recv( <'g'^~e.1,aead(kdf2(<ck, 'g'^(~e*~e.1)>), '0', h(<hash,
'g'^~e.1>), peer),aead(kdf2(<kdf1(<ck, 'g'^(~e*~e.1)>), z>), '0',h(<h(<hash,
'g'^~e.1>),aead(kdf2(<ck, 'g'^(~e*~e.1)>), '0', h(<hash, 'g'^~e.1>), peer)>),
payload)>) �� #claim is recognized thanks to the presence of the following pattern 'g'^~e.1.
The function does need one parameter from the user, the type of oracle it is used for. It can be def
for the Vacarme default case, curve for Vacarme oracle_C25519_K1X1 case and diff if the tactic
is used to prove an equivalence lemma. If the parameter specified is anything else, the default
case will be used. It works as follows. First, it will retrieve from the system state the formulas
that have the Reveal fact name and matches the regex exp\\('g'. For the retrieved formulas, it
will then put in a list the content of the Free variables along the variable ~n. In the case of the
example given above, the list would be [~n,~e,~e.1]. They are the variable that the function
will try to match against. Once it is done, the tested constraint will be recognized if it includes an
exponentiation that uses the previously listed elements (just one as exponent or a multiplication).
* defaultNoise: this function takes two parameter: the oracle type (as explained for dhreNoise)
and a regex pattern. The regex pattern should allow the program to extract the nonces targeted
by the user from the constraint. For example, in the default case of Vacarme, the regex is
(?<!'g'\^)\~[a-zA-Z.0-9]* and aims at recovering the nonces used in exponentiation. The goal
of the function is to verify that all the recovered nonces can be found in the list extracted from the
system state as explained for dhreNoise. The constraint will only be recognized if all his nonces
are in the list. * reasonableNoncesNoise: takes one parameter (same as dhreNoise). It works as
defaultNoise but works with all the nonces of the constraint and therefore does not need a regex
pattern to retrieve them. * nonAbsurdConstraint: this function retrieve the functions names
present in the constraint and verifies if they are “Ku” or “inv” (this means the key words coming
before parenthesis). It also retrieves the list of nonces form the system state as explained for
dhreNoise and checks if they do not appear in the constraint. If both the conditions are verified,
the constraint is recognized. It only takes one argument (the same as dhreNoise).

How to write your own function(s) The functions need to be added to the lib/theory/src/Theory/Text/Parser/Tactics.hs
file, in the function named tacticFunctions. The implementation has been designed to be modular.
The first step is to record the function in the repertory, the name in quote will be the one used
by the user in the tactic, the other, the one used for the implementation. They can be different
if necessary. The “user function name” also need to be added to the nameToFunction list, along
with a quick description for the error message. Regarding the implementation of the function,
the first thing to know is that every function you write will take two parameters. The first one
is the list of strings that the user may pass to the function (the pattern for regex for example).
Nothing forbids the user to write as many parameters as he wants, we will however only use the
first ones we need. The second parameter is a triplet composed of the constraint being tested, the
proof context and the system. The function then needs to return a boolean, True if the constraint,
proof context or system have been recognized, False if not. If needed, new postranking functions
can be added by doing the following steps. First registering the name of the new function in the
rankingFunctions function in lib/theory/src/Theory/Text/Parser/Tactics.hs. Then writing the
function. It only needs to take in parameters the proof methods to sort and return them in the
new order. To be considered, the code then needs to be recompiled, using make. The new function
is then ready to be used.
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Using an Oracle

Oracles allow to implement user-defined heuristics as custom rankings of proof methods. They are
invoked as a process with the lemma under scrutiny as the first argument and all current proof
methods seperated by EOL over stdin. Proof methods match the regex (\d+):(.+) where (\d+)
is the method’s index, and (.+) is the actual constraint. A proof method is formatted like one of
the applicable proof methods shown in the interactive view, but without solve(…) surrounding it.
One can also observe the input to the oracle in the stdout of tamarin itself. Oracle calls are logged
between START INPUT, START OUTPUT, and END Oracle call.

The oracle can set the new order of proof methods by writing the proof indices to stdout, separated
by EOL. The order of the indices determines the new order of proof methods. An oracle does not
need to rank all proof methods. Unranked proof methods will be ranked with lower priority than
ranked proof methods but kept in order. For example, if an oracle was given the proof methods
1-4, and would output:

4
2

the new ranking would be 4, 2, 1, 3. In particular, this implies that an oracle which does not output
anything, behaves like the identity function on the ranking.

Next, we present a small example to demonstrate how an oracle can be used to generate efficient
proofs.

Assume we want to prove the uniqueness of a pair <xcomplicated,xsimple>, where xcomplicated
is a term that is derived via a complicated and long way (not guaranteed to be unique) and xsimple
is a unique term generated via a very simple way. The built-in heuristics cannot easily detect that
the straightforward way to prove uniqueness is to solve for the term xsimple. By providing an
oracle, we can generate a very short and efficient proof nevertheless.

Assume the following theory.

theory SourceOfUniqueness begin

heuristic: o "myoracle"

builtins: symmetric-encryption

rule generatecomplicated:
[ In(x), Fr(~key) ]
--[ Complicated(x) ]->
[ Out(senc(x,~key)), ReceiverKeyComplicated(~key) ]

rule generatesimple:
[ Fr(~xsimple), Fr(~key) ]
--[ Simpleunique(~xsimple) ]->
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[ Out(senc(~xsimple,~key)), ReceiverKeySimple(~key) ]

rule receive:
[ ReceiverKeyComplicated(keycomplicated), In(senc(xcomplicated,keycomplicated))
, ReceiverKeySimple(keysimple), In(senc(xsimple,keysimple))
]
--[ Unique(<xcomplicated,xsimple>) ]->
[ ]

//this restriction artificially complicates an occurrence of an event Complicated(x)
restriction complicate:
"All x #i. Complicated(x)@i

==> (Ex y #j. Complicated(y)@j & #j < #i) | (Ex y #j. Simpleunique(y)@j & #j < #i)"

lemma uniqueness:
"All #i #j x. Unique(x)@i & Unique(x)@j ==> #i=#j"

end

We use the following oracle to generate an efficient proof.

#!/usr/bin/env python

from __future__ import print_function
import sys

lines = sys.stdin.readlines()

l1 = []
l2 = []
l3 = []
l4 = []
lemma = sys.argv[1]

for line in lines:
num = line.split(':')[0]

if lemma == "uniqueness":
if ": ReceiverKeySimple" in line:
l1.append(num)

elif "senc(xsimple" in line or "senc(~xsimple" in line:
l2.append(num)

elif "KU( ~key" in line:
l3.append(num)

else:
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exit(0)

ranked = l1 + l2 + l3

for i in ranked:
print(i)

Having saved the Tamarin theory in the file SourceOfUniqueness.spthy and the oracle in the file
myoracle, we can prove the lemma uniqueness, using the following command.

tamarin-prover --prove=uniqueness SourceOfUniqueness.spthy

The generated proof consists of only 10 steps. (162 steps with ‘consecutive’ ranking, non-termination
with ‘smart’ ranking).

Sometimes, one makes mistakes when writing an oracle or forgets to address a case in which the
oracle would need to rank a proof method for termination. For example in the oracle above, it
could happen that none of the three checks apply to any of the proof method and the oracle prints
nothing. To help debugging oracles, the interactive mode of Tamarin provides an autoprove option
that stops proving whenever the oracle ranks no proof methods (it is called o. autoprove until
oracle returns nothing). This way, you can easily find and inspect the cases in which you might
need to refine your oracle.

Manual Exploration using GUI

See Section Example for a short demonstration of the main features of the GUI.

Disabling Server Access Logs

Sometimes the web server access logs can be too noisy if you are trying to do print debugging while
using the interactive mode. The logs are on by default but can be disabled with the --no-logging
CLI argument.

tamarin-prover interactive --no-logging <Theory>

This will run Tamarin in interactive mode and suppress the web server logs.

Different Channel Models

Tamarin’s built-in adversary model is often referred to as the Dolev-Yao adversary. This models an
active adversary that has complete control of the communication network. Hence this adversary can
eavesdrop on, block, and modify messages sent over the network and can actively inject messages
into the network. The injected messages though must be those that the adversary can construct
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from his knowledge, i.e., the messages he initially knew, the messages he has learned from observing
network traffic, and the messages that he can construct from messages he knows.

The adversary’s control over the communication network is modeled with the following two built-in
rules:

1.

rule irecv:
[ Out( x ) ] --> [ !KD( x ) ]

2.

rule isend:
[ !KU( x ) ] --[ K( x ) ]-> [ In( x ) ]

The irecv rule states that any message sent by an agent using the Out fact is learned by the
adversary. Such messages are then analyzed with the adversary’s message deduction rules, which
depend on the specified equational theory.

The isend rule states that any message received by an agent by means of the In fact has been
constructed by the adversary.

We can limit the adversary’s control over the protocol agents’ communication channels by specifying
channel rules, which model channels with intrinsic security properties. In the following, we illustrate
the modelling of confidential, authentic, and secure channels. Consider for this purpose the following
protocol, where an initiator generates a fresh nonce and sends it to a receiver.

I: fresh(n)
I -> R: n

We can model this protocol as follows.

/* Protocol */

rule I_1:
[ Fr(~n) ]
--[ Send($I,~n), Secret_I(~n) ]->
[ Out(<$I,$R,~n>) ]

rule R_1:
[ In(<$I,$R,~n>) ]
--[ Secret_R(~n), Authentic($I,~n) ]->
[ ]

/* Security Properties */
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lemma nonce_secret_initiator:
"All n #i #j. Secret_I(n) @i & K(n) @j ==> F"

lemma nonce_secret_receiver:
"All n #i #j. Secret_R(n) @i & K(n) @j ==> F"

lemma message_authentication:
"All I n #j. Authentic(I,n) @j ==> Ex #i. Send(I,n) @i &i<j"

We state the nonce secrecy property for the initiator and responder with the nonce_secret_initiator
and the nonce_secret_receiver lemma, respectively. The lemma message_authentication
specifies a message authentication property for the responder role.

If we analyze the protocol with insecure channels, none of the properties hold because the adversary
can learn the nonce sent by the initiator and send his own one to the receiver.

Confidential Channel Rules Let us now modify the protocol such that the same message is
sent over a confidential channel. By confidential we mean that only the intended receiver can read
the message but everyone, including the adversary, can send a message on this channel.

/* Channel rules */

rule ChanOut_C:
[ Out_C($A,$B,x) ]

--[ ChanOut_C($A,$B,x) ]->
[ !Conf($B,x) ]

rule ChanIn_C:
[ !Conf($B,x), In($A) ]

--[ ChanIn_C($A,$B,x) ]->
[ In_C($A,$B,x) ]

rule ChanIn_CAdv:
[ In(<$A,$B,x>) ]

-->
[ In_C($A,$B,x) ]

/* Protocol */

rule I_1:
[ Fr(~n) ]
--[ Send($I,~n), Secret_I(~n) ]->

[ Out_C($I,$R,~n) ]

rule R_1:
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[ In_C($I,$R,~n) ]
--[ Secret_R(~n), Authentic($I,~n) ]->

[ ]

The first three rules denote the channel rules for a confidential channel. They specify that whenever
a message x is sent on a confidential channel from $A to $B, a fact !Conf($B,x) can be derived.
This fact binds the receiver $B to the message x, because only he will be able to read the message.
The rule ChanIn_C models that at the incoming end of a confidential channel, there must be a
!Conf($B,x) fact, but any apparent sender $A from the adversary knowledge can be added. This
models that a confidential channel is not authentic, and anybody could have sent the message.

Note that !Conf($B,x) is a persistent fact. With this, we model that a message that was sent
confidentially to $B can be replayed by the adversary at a later point in time. The last rule,
ChanIn_CAdv, denotes that the adversary can also directly send a message from his knowledge on
a confidential channel.

Finally, we need to give protocol rules specifying that the message ~n is sent and received on a
confidential channel. We do this by changing the Out and In facts to the Out_C and In_C facts,
respectively.

In this modified protocol, the lemma nonce_secret_initiator holds. As the initiator sends the
nonce on a confidential channel, only the intended receiver can read the message, and the adversary
cannot learn it.

Authentic Channel Rules Unlike a confidential channel, an adversary can read messages sent
on an authentic channel. However, on an authentic channel, the adversary cannot modify the
messages or their sender. We modify the protocol again to use an authentic channel for sending
the message.

/* Channel rules */

rule ChanOut_A:
[ Out_A($A,$B,x) ]
--[ ChanOut_A($A,$B,x) ]->
[ !Auth($A,x), Out(<$A,$B,x>) ]

rule ChanIn_A:
[ !Auth($A,x), In($B) ]
--[ ChanIn_A($A,$B,x) ]->
[ In_A($A,$B,x) ]

/* Protocol */

rule I_1:
[ Fr(~n) ]
--[ Send($I,~n), Secret_I(~n) ]->
[ Out_A($I,$R,~n) ]
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rule R_1:
[ In_A($I,$R,~n) ]
--[ Secret_R(~n), Authentic($I,~n) ]->
[ ]

The first channel rule binds a sender $A to a message x by the fact !Auth($A,x). Additionally, the
rule produces an Out fact that models that the adversary can learn everything sent on an authentic
channel. The second rule says that whenever there is a fact !Auth($A,x), the message can be
sent to any receiver $B. This fact is again persistent, which means that the adversary can replay it
multiple times, possibly to different receivers.

Again, if we want the nonce in the protocol to be sent over the authentic channel, the corresponding
Out and In facts in the protocol rules must be changed to Out_A and In_A, respectively. In the
resulting protocol, the lemma message_authentication is proven by Tamarin. The adversary can
neither change the sender of the message nor the message itself. For this reason, the receiver can
be sure that the agent in the initiator role indeed sent it.

Secure Channel Rules The final kind of channel that we consider in detail are secure channels.
Secure channels have the property of being both confidential and authentic. Hence an adversary
can neither modify nor learn messages that are sent over a secure channel. However, an adversary
can store a message sent over a secure channel for replay at a later point in time.

The protocol to send the messages over a secure channel can be modeled as follows.

/* Channel rules */

rule ChanOut_S:
[ Out_S($A,$B,x) ]

--[ ChanOut_S($A,$B,x) ]->
[ !Sec($A,$B,x) ]

rule ChanIn_S:
[ !Sec($A,$B,x) ]

--[ ChanIn_S($A,$B,x) ]->
[ In_S($A,$B,x) ]

/* Protocol */

rule I_1:
[ Fr(~n) ]
--[ Send($I,~n), Secret_I(~n) ]->
[ Out_S($I,$R,~n) ]

rule R_1:
[ In_S($I,$R,~n) ]
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--[ Secret_R(~n), Authentic($I,~n) ]->
[ ]

The channel rules bind both the sender $A and the receiver $B to the message x by the fact
!Sec($A,$B,x), which cannot be modified by the adversary. As !Sec($A,$B,x) is a persistent
fact, it can be reused several times as the premise of the rule ChanIn_S. This models that an
adversary can replay such a message block arbitrary many times.
For the protocol sending the message over a secure channel, Tamarin proves all the considered
lemmas. The nonce is secret from the perspective of both the initiator and the receiver because the
adversary cannot read anything on a secure channel. Furthermore, as the adversary cannot send his
own messages on the secure channel nor modify messages transmitted on the channel, the receiver
can be sure that the nonce was sent by the agent who he believes to be in the initiator role.
Similarly, one can define other channels with other properties. For example, we can model a secure
channel with the additional property that it does not allow for replay. This could be done by chang-
ing the secure channel rules above by chaining !Sec($A,$B,x) to be a linear fact Sec($A,$B,x).
Consequently, this fact can only be consumed once and not be replayed by the adversary at a later
point in time. In a similar manner, the other channel properties can be changed and additional
properties can be imagined.

Induction

Tamarin’s constraint solving approach is similar to a backwards search, in the sense that it starts
from later states and reasons backwards to derive information about possible earlier states. For
some properties, it is more useful to reason forwards, by making assumptions about earlier states
and deriving conclusions about later states. To support this, Tamarin offers a specialised inductive
proof method.
We start by motivating the need for an inductive proof method on a simple example with two rules
and one lemma:

rule start:
[ Fr(x) ]

--[ Start(x) ]->
[ A(x) ]

rule repeat:
[ A(x) ]

--[ Loop(x) ]->
[ A(x) ]

lemma AlwaysStarts [use_induction]:
"All x #i. Loop(x) @i ==> Ex #j. Start(x) @j"

If we try to prove this with Tamarin without using induction (comment out the [use_induction]
to try this) the tool will loop on the backwards search over the repeating A(x) fact. This fact can
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have two sources, either the start rule, which ends the search, or another instantiation of the loop
rule, which continues.

The induction method works by distinguishing the last timepoint #i in the trace, as last(#i),
from all other timepoints. It assumes the property holds for all other timepoints than this one.
As these other time points must occur earlier, this can be understood as a form of wellfounded
induction. The induction hypothesis then becomes an additional constraint during the constraint
solving phase and thereby allows more properties to be proven.

This is particularly useful when reasoning about action facts that must always be preceded in traces
by some other action facts. For example, induction can help to prove that some later protocol
step is always preceded by the initialization step of the corresponding protocol role, with similar
parameters.

Induction, however, does not work for all types of lemmas. Let us investigate the limitations of
induction now as well. Consider another rule and lemma, added to the model from above.

rule finish:
[ A(x) ]

--[ End(x) ]->
[]

lemma AlwaysStartsWhenEnds [use_induction]:
"All x #i. End(x) @i ==> Ex #j. Start(x) @j"

Tamarin will fail to prove the AlwaysStartsWhenEnds lemma, although we apply induction. The
induction hypothesis here is that AlwaysStartsWhenEnds holds but not at the last time-point; or
more detailed: If there is an End(x) but not at the last time-point, then there is a Start(x) but
not at the last time-point.

We cannot apply this induction hypothesis fruitfully, though, as there will be always only one
instance of End(~x), which will be at the last time-point. Intuitively speaking, induction can only
be applied fruitfully if the facts, on which the lemma “depends” (e.g., on the left-hand side of an
implication), occur multiple times in the trace. Usually, this applies to facts that “loop”.

Often, one can engineer around this restriction by connecting non-looping facts to looping facts using
auxiliary lemmas. In the above example, the AlwaysStarts lemma provides such a connection. If
you mark it as a reuse lemma, you can easily prove AlwaysStartsWhenEnds without induction.

Integrated Preprocessor

Tamarin’s integrated preprocessor can be used to include or exclude parts of your file. You can use
this, for example, to restrict your focus to just some subset of lemmas, or enable different behaviors
in the modeling. This is done by putting the relevant part of your file within an #ifdef block with
a keyword KEYWORD

#ifdef KEYWORD
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...
#endif

and then running Tamarin with the option -DKEYWORD to have this part included. In addition, a
keyword can also be set to true with

#define KEYWORD

Boolean formulas in the conditional are also allowed as well as else branches

#ifdef (KEYWORD1 & KEYWORD2) | KEYWORD3
...
#else
...
#endif

If you use this feature to exclude source lemmas, your case distinctions will change, and you may no
longer be able to construct some proofs automatically. Similarly, if you have reuse marked lemmas
that are removed, then other following lemmas may no longer be provable.

The following is an example of a lemma that will be included when timethis is given as parameter
to -D:

#ifdef timethis
lemma tobemeasured:
exists-trace
"Ex r #i. Action1(r)@i"

#endif

At the same time this would be excluded:

#ifdef nottimed
lemma otherlemma2:
exists-trace
"Ex r #i. Action2(r)@i"

#endif

The preprocessor also allows to include another file inside your main file.

#include "path/to/myfile.spthy"

The path can be absolute or relative to the main file. Included files can themselves contain other
preprocessing flags, and the include behavior is recursive.
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How to Time Proofs in Tamarin

If you want to measure the time taken to verify a particular lemma you can use the previously
described preprocessor to mark each lemma, and only include the one you wish to time. This can
be done, for example, by wrapping the relevant lemma within #ifdef timethis. Also make sure
to include reuse and sources lemmas in this. All other lemmas should be covered under a different
keyword; in the example here we use nottimed.

By running

time tamarin-prover -Dtimethis TimingExample.spthy --prove

the timing are computed for just the lemmas of interest. Here is the complete input file, with an
artificial protocol:

/*
This is an artificial protocol to show how to include/exclude parts of
the file based on the built-in preprocessor, particularly for timing
of lemmas.
*/

theory TimingExample
begin

rule artificial:
[ Fr(~f) ]

--[ Action1(~f) , Action2(~f) ]->
[ Out(~f) ]

#ifdef nottimed
lemma otherlemma1:

exists-trace
"Ex r #i. Action1(r)@i & Action2(r)@i"

#endif

#ifdef timethis
lemma tobemeasured:
exists-trace
"Ex r #i. Action1(r)@i"

#endif

#ifdef nottimed
lemma otherlemma2:
exists-trace
"Ex r #i. Action2(r)@i"

#endif
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end

Configure the Number of Threads Used by Tamarin

Tamarin uses multi-threading to speed up the proof search. By default, Haskell automatically
counts the number of cores available on the machine and uses the same number of threads.

Using the options of Haskell’s run-time system this number can be manually configured. To use x
threads, add the parameters

+RTS -Nx -RTS

to your Tamarin call, e.g.,

tamarin-prover Example.spthy --prove +RTS -N2 -RTS

to prove the lemmas in file Example.spthy using two cores.

Equation Store

Tamarin stores equations in a special form to allow delaying case splits on them. This allows us for
example to determine the shape of a signed message without case splitting on its variants. In the
GUI, you can see the equation store being pretty printed as follows.

free-substitution

1. fresh-substitution-group
...
n. fresh substitution-group

The free-substitution represents the equalities that hold for the free variables in the constraint
system in the usual normal form, i.e., a substitution. The variants of a protocol rule are represented
as a group of substitutions mapping free variables of the constraint system to terms containing only
fresh variables. The different fresh-substitutions in a group are interpreted as a disjunction.

Logically, the equation store represents expression of the form

x_1 = t_free_1
& ...
& x_n = t_free_n
& ( (Ex y_111 ... y_11k. x_111 = t_fresh_111 & ... & x_11m = t_fresh_11m)
| ...
| (Ex y_1l1 ... y_1lk. x_1l1 = t_fresh_1l1 & ... & x_1lm = t_fresh_1lm)



128 CONTENTS

)
& ..
& ( (Ex y_o11 ... y_o1k. x_o11 = t_fresh_o11 & ... & x_o1m = t_fresh_o1m)
| ...
| (Ex y_ol1 ... y_olk. x_ol1 = t_fresh_ol1 & ... & x_1lm = t_fresh_1lm)
)

Subterms

The subterm predicate (written << or �) captures a dependency relation on terms. It can be used
just as = in lemmas and restrictions. Intuitively, if x is a subterm of t, then x is needed to compute
t. This relation is a strict partial order, satisfies transitivity, and, most importantly, is consistent
with the equational theory. For example, x�h(x) and also c ++ a � a ++ b ++ c hold.

It gets more complicated when working with operators that are on top of a rewriting rule’s left
side (excluding AC rules), e.g., fst/snd for pairs: fst(<a,b>) � a, � for xor and adec/sdec for
decryption. We call these operators reducible. These cases do not happen in practice as, it is not
even clear what the relation intuitively means, e.g., for x�x�y one could argue that x was needed to
construct x�y but if y is instantiated with x, then x�y=x�x=0 which clearly does not contain x.

Non-Provable Lemmas Tamarins reasoning for subterms works well for irreducible operators.
For reducible operators, however, the following situation can appear: No more constraints are left
but there are reducible operators in subterms. Usually, we have found a trace if no constraints are
left. However, if we have, e.g., x�x�y as a constraint left, then our constraint solving algorithm cannot
solve this constraint, i.e., it is not clear whether we found a trace. In such a situation, Tamarin
indicates with a yellow color in the proof tree that this part of the proof cannot be completed, i.e.,
there could be a trace, but we’re not sure. Even with such a yellow part, it can be that we find a
trace in another part of the proof tree and prove an exists-trace lemma.

In the following picture one can see the subterm with the reducible operator fst on the right side.
Therefore, on the left side, the proof is marked yellow (with the blue line marking the current po-
sition). Also, this example demonstrates in lemma GreenYellow, that in an exists-trace lemma,
a trace can be still found and the lemma proven even if there is a part of the proof that cannot
be finished. Analogously, lemma RedYellow demonstrates that a all-traces lemma can still be
disproven if a violating trace was found. The last two lemmas are ones where no traces were found
in the rest of the proof, thus the overall result of the computation is Tamarin cannot prove this
property.
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Subterm Store Subterms are solved by recursively deconstructing the right side which basically
boils down to replacing t � f(t1,...,tn) by the disjunction t=t1 � t�t1 � ··· � t=tn � t�tn.
This disjunction can be quite large, so we want to delay it if not needed. The subterm store is the
tool to do exactly this. It collects subterms, negative subterms (e.g., ¬ x � h(y) being split to x�y
� ¬x�y) and solved subterms which were already split. With this collection, many simplifications
can be applied without splitting, especially concerning transitivity.
Subterms are very well suited for nat terms as it reflects the smaller-than relation on natural
numbers. Therefore, Tamarin provides special algorithms in deducing contradictions on natural
numbers. Notably, if we are looking at natural numbers, we can deduce x�y from (¬y�x � x�y)
which is not possible for normal subterms.
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For more detailed explanations on subterms and numbers, look at the paper “Subterm-based proof
techniques for improving the automation and scope of security protocol analysis” which introduced
subterms and numbers to Tamarin.

Reasoning about Exclusivity: Facts Symbols with Injective Instances

We say that a fact symbol F has injective instances with respect to a multiset rewriting system
R, if there is no reachable state of the multiset rewriting system R with more than one instance
of an F-fact with the same term as a first argument. Injective facts typically arise from modeling
databases using linear facts. An example of a fact with injective instances is the Store-fact in the
following multiset rewriting system.

rule CreateKey: [ Fr(handle), Fr(key) ] --> [ Store(handle, key) ]

rule NextKey: [ Store(handle, key) ] --> [ Store(handle, h(key)) ]

rule DelKey: [ Store(handle,key) ] --> []

When reasoning about the above multiset rewriting system, we exploit that Store has injective
instances to prove that after the DelKey rule no other rule using the same handle can be applied.
This proof uses trace induction and the following constraint-reduction rule that exploits facts with
unique instances.

Let F be a fact symbol with injective instances. Let i, j, and k be temporal variables ordered
according to

i < j < k

and let there be an edge from (i,u) to (k,w) for some indices u and v, as well as an injective fact
F(t,...) in the conclusion (i,u).

Then, we have a contradiction either if: 1) both the premises (k,w) and (j,v) are consuming and
require a fact F(t,...). 2) both the conclusions (i,u) and (j,v) produce a fact F(t,..).

In the first case, (k,w) and (j,v) would have to be merged, and in the second case (i,u) and
(j,v) would have to be merged. This is because the edge (i,u) >-> (k,w) crosses j and the state
at j therefore contains F(t,...). The merging is not possible due to the ordering constraints i <
j < k.

Detection of Injective Facts Note that computing the set of fact symbols with injective in-
stances is undecidable in general. We therefore compute an under-approximation to this set using
the following simple heuristic:

We check for each occurrence of the fact-tag in a rule that there is no other occurrence with the
same first term and 1. either there is a Fr-fact of the first term as a premise 2. or there is exactly
one consume fact-tag with the same first term in a premise
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We exclude facts that are not copied in a rule, as they are already handled properly by the naive
backwards reasoning.

Additionally, we determine the monotonic term positions which are - Constant (=) - Increas-
ing/Decreasing (</>) - Strictly Increasing/Decreasing (�/�) Positions can also be inside tuples if
these tuples are always explicitly used in the rules.

In the example above, the key in Store is strictly increasing as key is a syntactic subterm of h(key)
and h is not a reducible operator (not appearing on the top of a rewriting rules left side).

These detected injective facts can be viewed on the top of the right side when clicking on “Message
Rewriting Rules”. The Store would look as follows: Store(id,<) indicating that the first term is for
identification of the injective fact while the second term is strictly increasing. Possible symbols are
�, �, <, > and =. A tuple position is marked with additional parantheses, e.g., Store(id,(<,�),=).

Note that this support for reasoning about exclusivity was sufficient for our case studies, but it
is likely that more complicated case studies require additional support. For example, that fact
symbols with injective instances can be specified by the user and the soundness proof that these
symbols have injective instances is constructed explicitly using the Tamarin prover. Please tell
us, if you encounter limitations in your case studies: https://github.com/tamarin-prover/tamarin-
prover/issues.

Monotonicity With the monotonic term positions, we can additionally reason as follows: if there
are two instances at positions i and j of an injective fact with the same first term, then - for each
two terms s,t at a constant position - (1) s=t is deduced - for each two terms s,t at a strictly
increasing position: - (2) if s=t, then i=j is deduced - (3) if s�t, then i<j is deduced - (4) if i<j
or j<i, then s�t is deduced - (5) if ¬s�t and ¬s=t, then j<i is deduced (as t�s must hold because of
monotonicity) - for each two terms s,t at an increasing position: - (3) if s�t, then i<j is deduced -
(5) if ¬s�t and ¬s=t, then j<i is deduced (as t�s must hold because of monotonicity) - for decreasing
and strictly decreasing, the inverse of the increasing cases holds

Convenience Functions for Print Debugging

For debugging Haskell programs it is still convenient to use simple print debugging. The standard
library includes the Debug.trace family of functions that can even be used from a pure context
to print debug output. Since adding too many debug prints can lead to a noisy output we imple-
ment some convenience functions on top of Debug.trace, which can be selectively turned on when
debugging a certain section of the code.

The following functions are implemented in the Debug.Trace.EnvTracer module. Functions usable
in an Applicative/Monad have an “M” suffix.

etraceSectionLn :: String -> String -> b -> b
etraceSectionLnM :: Applicative f => String -> String -> f ()
etraceLn :: String -> String -> String -> b -> b
etraceLnM :: Applicative f => String -> String -> String -> f ()



132 CONTENTS

The first argument to all functions is a trace key string. When running Tamarin you can set the
DEBUG_TRACE environment variable to a comma-separated list of trace keys, which will then enable
the corresponding debug outputs. Any debug trace whose key is not contained in the environment
variable will be suppressed.
The etraceSectionLn* functions are used to make visual separators for debug outputs. The
etraceLn* functions take a label to give context and an arbitrary string to print.
For example, the following example program would result in the debug output below if the
DEBUG_TRACE variable contains “foo”.

etraceSectionLn "foo" "TITLE" $
etraceLn "foo" "functionA" "called functionA" $
...

=== TITLE ======================================================================
functionA: called functionA

Outputting constraint systems when satisfying traces are found.

It can be useful for further analysis to output the constraint system of the state of the proof of
a lemma when either a satisfying trace is found in an “exists-trace” lemma, or when a counterex-
ample trace is found in an “all-traces” lemma. For this you can use the command line options
--output-json (or --oj) and --output-dot (or --od) in the non-interactive mode of tamarin.
The command line options take a required filename and will output all those constraint systems
into the file in the respective format.

tamarin-prover --prove --output-json=traces.json --output-dot=traces.dot examples/Tutorial.spthy

For dot, the file is simply the concatenation of all ‘digraph’ expressions, which can then be rendered
into individual image files using the -O option of the dot command line program.

# will output images to traces.dot.png, traces.dot.2.png, traces.dot.3.png, ...
dot -Tpng -O traces.dot

For JSON, the standard schema already defines a single top-level object with a “graphs” key that
holds a list of the individual graphs, which we use to output the constrain systems.

Case Studies

The Tamarin repository contains many examples from the various papers in the subdirectory ex-
amples. These can serve as inspiration when modelling other protocols.
In particular there are subdirectories containing the examples from the associated papers and theses,
and a special subdirectory features that contains examples illustrating Tamarins various features.

https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples
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Toolchains

There exist several tools that accept Tamarin files as input for further processing.

Tree-sitter grammar

There exists a Tree-sitter grammar for Spthy files with support for SAPiC+: tree-sitter-spthy

The grammar allows generating parsers that can be used in third-party tools without dependencies
to the Tamarin implementation.

Alice&Bob input

There exists a tool that translates Alice&Bob-specifications to Tamarin: http://www.infsec.ethz.
ch/research/software/anb.html

Tamarin-Troop

If you want to export a SAPIC file to multiple provers, and find out which prover works fastest for
a lemma in the file, the python script tamarin-troop can help you.

First, tamarin-troop will export your SAPIC file and lemma to the provers you choose. Currently,
it supports ProVerif, Deepsec, GSVerif, and Tamarin. Then, it will run the provers concurrently,
report the result and the time the first prover took to finish, and abort the calls to the other provers.

To get tamarin-troop copy etc/tamarin-troop.py into your $PATH.

How to use Tamarin-Troop

Tamarin-troop requires a python 3 installation to work. Moreover, it expects the provers to be in
your path under their usual names (i.e tamarin-prover for tamarin, proverif for ProVerif etc.)

We now go over its most important command-line parameters and their semantics. Invoke

./tamarin-troop.py --help

for more information.

• -file path_to_your_sapic_file is the only required argument. This is the path to your
SAPIC file.

https://github.com/tamarin-prover/tamarin-prover/tree-sitter
http://www.infsec.ethz.ch/research/software/anb.html
http://www.infsec.ethz.ch/research/software/anb.html
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• -t arg1 arg2 … tells tamarin-troop to concurrently call the Tamarin-prover on the SAPIC
file. For each argument, tamarin-troop will call Tamarin with the argument. The double-
dashes are added by tamarin-troop. There is no need to type them out. You can give this
parameter multiple times. If you do, tamarin-troop makes multiple calls to Tamarin using the
cross-product of the given arguments.
For instance,

./tamarin-troop.py -file nsl-no_as-untagged.spthy -t help auto-sources

results in the following calls to Tamarin:

Executing 'tamarin-prover nsl-no_as-untagged.spthy --prove --help'
Executing 'tamarin-prover nsl-no_as-untagged.spthy --prove --auto-sources'

The call

./tamarin-troop.py -file nsl-no_as-untagged.spthy -t help auto-sources -t help auto-sources

leads to the following calls:

Executing 'tamarin-prover nsl-no_as-untagged.spthy --prove --help --help'
Executing 'tamarin-prover nsl-no_as-untagged.spthy --prove --help --auto-sources'
Executing 'tamarin-prover nsl-no_as-untagged.spthy --prove --auto-sources --help'
Executing 'tamarin-prover nsl-no_as-untagged.spthy --prove --auto-sources --auto-sources'

• -p arg1 arg2 … tells tamarin-troop to concurrently call ProVerif on the translated SAPIC file.
Tamarin-troop stores the translated SAPIC file in the directory it resides in. The generated
file is called input_file_proverif.pv; where input_file is the original SAPIC file. The
semantics are the same as -t.

• -d arg1 arg2 … tells tamarin-troop to concurrently call Deepsec on the translated SAPIC
file. Again, an intermediate file is generated by tamarin-troop. The same naming convention
applies. The semantics are the same as -t and -p.

• -l lemma1 lemma2 … tells tamarin-troop to export the lemmas lemma1 lemma2 ….
For calls to Tamarin this is done by adding the –prove=lemmaX flag. For each lemma
tamarin-troop will make one call to Tamarin. For ProVerif and Deepsec, tamarin-troop uses
the –lemma=lemmaX flag to only export a single lemma to the ProVerif/Deepsec file.
If the user gives no lemma, tamarin-troop exports ALL lemmas to ProVerif/Deepsec, and
tries to prove all lemmas with Tamarin. However, tamarin-troop currently assumes that there
is only one lemma/query in a file if no lemmas are given. Thus, not specifying any lemmas
only makes sense if the original SAPIC file contains exactly one lemma.

• -H {s,S,c,C,i,I} … tells tamarin-troop to call Tamarin with the given heuristics. If other
arguments for Tamarin are supplied via the -t parameters, the before mentioned cross-product
semantics apply.



LIMITATIONS 135

• -D Flag1 Flag2 … tells tamarin-troop to use the flags Flag1 Flag2… when calling Tamarin
on the SAPIC file, and when generating the ProVerif/ Deepsec files.

• –diff tells tamarin-troop to use Tamarins –diff flag for calls to Tamarin and ProVerif/ Deepsec
file generation.

• –gs tells tamarin-troop to use the GSVerif pre-processor on a ProVerif file before calling
ProVerif.

• -to sets a timeout for the calls tamarin-troop starts. The default is 5 seconds.

Limitations

Tamarin operates in the symbolic model and thus can only capture attacks within that model,
and given a certain equational theory. Currently, apart from the builtins, only subterm-convergent
theories are supported. The underlying verification problems are undecidable in general, so Tamarin
is not guaranteed to terminate.

In contrast to the trace mode, which is sound and complete, the observational equivalence mode
currently only (soundly) approximates observational equivalence by requiring a strict one-to-one
mapping between rules, which is too strict for some applications. Moreover, the support of restric-
tions in this mode is rather limited.

Contact and Further Reading

For further information, see the Tamarin web page, repositories, mailing list, and the scientific
papers describing its theory.

Tamarin Web Page

The official Tamarin web page is available at http://tamarin-prover.com/.

Tamarin Repository

The official Tamarin repository is available at https://github.com/tamarin-prover/tamarin-prover.

Reporting a Bug

If you want to report a bug, please use the bug tracker interface at https://github.com/
tamarin-prover/tamarin-prover/issues. Before submitting, please check that your issue is not
already known. Please submit a detailed and precise description of the issue, including a minimal
example file that allows to reproduce the error.

http://tamarin-prover.com/
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover/issues
https://github.com/tamarin-prover/tamarin-prover/issues
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Contributing and Developing Extensions

If you want to develop an extension, please fork your own repository and send us a pull request
once your feature is stable. See https://github.com/tamarin-prover/tamarin-prover/blob/develop/
CONTRIBUTING.md for more details.

Tamarin Manual

The manual’s source can be found in https://github.com/tamarin-prover/manual-pandoc. You are
invited to also contribute to this manual, just send us a pull request.

Tamarin Mailing list

There is a low-volume mailing-list used by the developers and users of Tamarin: https://groups.
google.com/group/tamarin-prover

It can be used to get help from the community, and to contact the developers and experienced
users.

Scientific Papers and Theory

The paper and theses documenting the theory are available at the Tamarin web page: http://
tamarin-prover.com/.
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Syntax Description

Here, we explain the formal syntax of the security protocol theory format that is processed by
Tamarin.

Comments are C-style and are allowed to be nested:

/* for a multi-line comment */
// for a line-comment

All security protocol theory are named and delimited by begin and end. We explain the non-
terminals of the body in the following paragraphs.

theory ::= 'theory' (ident: theory_name) ('configuration' ':' '"' commandline
'"')? 'begin' _body_item* 'end' /./*↪→

_body_item ::= preprocessor
| _signature_spec
| global_heuristic
| tactic
| process
| let
| export
| _rule
| restriction
| case_test
| _lemma
| formal_comment

Here, we use the term signature more liberally to denote both the defined function symbols and
the equalities describing their interaction. Note that our parser is stateful and remembers what
functions have been defined. It will only parse function applications of defined functions.

_signature_spec ::= built_ins
| functions
| equations
| predicates
| macros
| options

_function_sym ::= function_untyped
| function_typed

equations ::= >('equations' ('[' 'convergent' ']')? ':' equation (','
equation)* ','?)↪→

equation ::= (_term: left) '=' (_term: right)
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Note that the equations must be convergent and have the Finite Variant Property (FVP), and do
not allow the use of fixed public names in the terms. Tamarin provides built-in sets of function
definitions and equations. They are expanded upon parsing and you can therefore inspect them by
pretty printing the file using tamarin-prover your_file.spthy. The built-in diffie-hellman is
special. It refers to the equations given in Section Cryptographic Messages. You need to enable it
to parse terms containing exponentiations, e.g., g ^ x.

built_ins ::= 'builtins' ':' built_in (',' built_in)* ','?
built_in ::= 'diffie-hellman'

| 'hashing'
| 'symmetric-encryption'
| 'asymmetric-encryption'
| 'signing'
| 'bilinear-pairing'
| 'xor'
| 'multiset'
| 'natural-numbers'
| 'revealing-signing'
| 'locations-report'
| 'reliable-channel'
| 'dest-pairing'
| 'dest-signing'
| 'dest-symmetric-encryption'
| 'dest-asymmetric-encryption'

A global heuristic sets the default heuristic that will be used when autoproving lemmas in the file.
The specified proof method ranking can be any of those discussed in Section Heuristics.

global_heuristic ::= 'heuristic' ':' (_proof_method_ranking+:
proof_method_ranking)↪→

param ::= /[^"]*/

The tactics allow the user to write their own heuristics based on the lemmas there are trying to
prove. Their use is descibed in in Section Using a Tactic.

tactic ::= 'tactic' ':' ident presort? ((prio+ deprio*)
| (prio* deprio+))

presort ::= 'presort' ':' standard_proof_method_ranking
prio ::= 'prio' ':' ('{' post_ranking '}')? _function+
deprio ::= 'deprio' ':' ('{' post_ranking '}')? _function+
post_ranking ::= 'smallest'

| 'id'
_function ::= or_function

| and_function
| not_function
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| std_function
and_function ::= <LOGICAL_AND(_function '&' _function)
not_function ::= LOGICAL_NOT('not' _function)
function_name ::= 'regex'

| 'isFactName'
| 'isInFactTerms'
| 'dhreNoise'
| 'defaultNoise'
| 'reasonableNoncesNoise'
| 'nonAbsurdConstraint'

Multiset rewriting rules are specified as follows. The protocol corresponding to a security protocol
theory is the set of all multiset rewriting rules specified in the body of the theory. Rule variants
can be explicitly given, as well as the left and right instances of a rule in diff-mode. (When called
with --diff, Tamarin will parse diff_rule instead of rule).

_rule ::= rule
| diff_rule

rule ::= simple_rule variants?
diff_rule ::= simple_rule 'left' (rule: left) 'right' (rule: right)
simple_rule ::= 'rule' modulo? (ident: rule_identifier) rule_attrs? ':'
rule_let_block? premise ('-->'↪→

| action_fact) conclusion
variants ::= 'variants' simple_rule (',' simple_rule)*
modulo ::= '(' 'modulo' ('E'

| 'AC') ')'
rule_attrs ::= '[' rule_attr (',' rule_attr)* ','? ']'
rule_attr ::= rule_attr_color

| 'no_derivcheck'
| 'issapicrule'
| rule_process
| rule_role

rule_let_block ::= 'let' rule_let_term+ 'in'
rule_let_term ::= ((msg_var_or_nullary_fun

| nat_var): left) '=' (_term: right)
msg_var_or_nullary_fun ::= VARIABLE((ident: variable_identifier) ('.'
natural)? (':' 'msg')?)↪→

hexcolor ::= (''' @('#')? @(/[0-9a-fA-F]{1,6}/) ''')
| (@('#')? @(/[0-9a-fA-F]{1,6}/))

Rule annotations do not influence the rule’s semantics. A color is represented as a triplet of 8 bit
hexadecimal values optionally preceded by ‘#’, and is used as the background color of the rule
when it is rendered in graphs.

The let-block allows more succinct specifications. The equations are applied in a bottom-up fashion.
For example,
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let x = y
y = <z,x>

in [] --> [ A(y)] is desugared to [] --> [ A(<z,y>) ]

This becomes a lot less confusing if you keep the set of variables on the left-hand side separate from
the free variables on the right-hand side.

Macros works similarly to let-blocks, but apply globally to all rules.

macros ::= 'macros' ':' macro (',' macro)*
macro ::= (ident: macro_identifier) '(' (_non_temporal_var (','

_non_temporal_var)*)? ')' '=' (_term: term)↪→

_non_temporal_var ::= pub_var
| fresh_var
| msg_var_or_nullary_fun
| nat_var

Configuration blocks allow the specification of certain Tamarin command line options in the model
file itself. Options passed over the command line override options given in a configuration block.

configuration := 'configuration' ':' '"' option (' ' option)* '"'
option := '--auto-sources' | ('--stop-on-trace' '=' search_method)
search_method := 'DFS' | 'BFS' | 'SEQDFS' | 'NONE'

Restrictions specify restrictions on the set of traces considered, i.e., they filter the set of traces of
a protocol. The formula of a restriction is available as an assumption in the proofs of all security
properties specified in this security protocol theory. In observational equivalence mode, restrictions
can be associated to one side.

restriction ::= ('restriction'
| 'axiom') (ident: restriction_identifier)

restriction_attr? ':' '"' (_formula: formula) '"'↪→

restriction_attr ::= '[' ('left'
| 'right') ']'

Lemmas specify security properties. By default, the given formula is interpreted as a property that
must hold for all traces of the protocol of the security protocol theory. You can change this using
the ‘exists-trace’ trace quantifier. When exporting, one may indicate which lemmas should only be
included in certain output formats.

_lemma ::= lemma
| diff_lemma
| accountability_lemma
| equiv_lemma
| diff_equiv_lemma
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lemma ::= 'lemma' modulo? (ident: lemma_identifier) diff_lemma_attrs? ':'
trace_quantifier? '"' (_formula: formula) '"' (_proof_skeleton:
proof_skeleton)?

↪→

↪→

lemma_attr ::= 'sources'
| 'reuse'
| 'use_induction'
| ('output=' '[' language (',' language)* ']')
| ('hide_lemma=' ident)
| ('heuristic=' (_proof_method_ranking+:

proof_method_ranking))↪→

trace_quantifier ::= 'all-traces'
| 'exists-trace'

In observational equivalence mode, lemmas can be associated to one side.

diff_lemma ::= 'diffLemma' modulo? (ident: lemma_identifier)
diff_lemma_attrs? ':' (_proof_skeleton: proof_skeleton)?↪→

diff_lemma_attrs ::= '[' (diff_lemma_attr
| lemma_attr) (',' (diff_lemma_attr
| lemma_attr))* ','? ']'

diff_lemma_attr ::= 'left'
| 'right'

A proof skeleton is a complete or partial proof as output by the Tamarin prover. It indicates the
proof method used at each step, which may include multiple cases.

_proof_skeleton ::= solved
| mirrored
| by_method
| method_skeleton
| cases

solved ::= 'SOLVED'
mirrored ::= 'MIRRORED'
by_method ::= 'by' _proof_methods
method_skeleton ::= _proof_methods (_proof_skeleton: proof_skeleton)
cases ::= case ('next' case)* 'qed'
_proof_methods ::= >(proof_method

| step+)
proof_method ::= 'sorry'

| 'simplify'
| ('solve' '(' constraint ')')
| 'contradiction'
| 'induction'
| 'rule-equivalence'
| 'backward-search'
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| 'ATTACK'
natural ::= /[0-9]+/
natural_subscript ::= ('�'

| '�'
| '�'
| '�'
| '�'
| '�'
| '�'
| '�'
| '�'
| '�')+

Formal comments are used to make the input more readable. In contrast to /*...*/ and //...
comments, formal comments are stored and output again when pretty-printing a security protocol
theory.

formal_comment ::= (ident: comment_identifier) @('{*'
/[^*]*\*+([^}*][^*]*\*+)*/ '}')↪→

For the syntax of terms, you best look at our examples. A common pitfall is to use an undefined
function symbol. This results in an error message pointing to a position slightly before the actual
use of the function due to some ambiguity in the grammar.

We provide special syntax for tuples, multisets, xors, multiplications, exponentiation, nullary and
binary function symbols. An n-ary tuple <t1,...,tn> is parsed as n-ary, right-associative appli-
cation of pairing. Multiplication and exponentiation are parsed left-associatively. For a binary
operator enc you can write enc{m}k or enc(m,k). For nullary function symbols, there is no need to
write nullary(). Note that the number of arguments of an n-ary function application must agree
with the arity given in the function definition.

_term ::= tuple_term
| mset_term
| nested_term
| nullary_fun
| binary_app
| nary_app
| _literal

mset_term ::= <MUL_SET((nat_term: left) ('++'
| '+') (nat_term: right))

nat_term ::= <ADD((xor_term: left) '%+' (xor_term: right))
xor_term ::= <EXCLUSIVE_OR((mult_term: left) ('XOR'

| '�') (mult_term: right))
mult_term ::= <MULTIPLY((exp_term: left) '*' (exp_term: right))
exp_term ::= >EXPONENTIAL((_term: base) '^' (_term: exponent))
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Tamarin’s parser checks that functions were previously defined and are used with the correct arity.

nullary_fun := <all-nullary-functions-defined-up-to-here>
binary_app := binary_fun '{' tupleterm '}' term
binary_fun := <all-binary-functions-defined-up-to-here>
nary_app := nary_fun '(' multterm* ')'

External tools may instead use the following grammar and check these conditions after parsing.

binary_app ::= FUNCTION((ident: function_identifier) '{' (_term: argument)
(',' (_term: argument))*? '}' (_term: argument))↪→

nary_app ::= FUNCTION((ident: function_identifier) '(' arguments ')')

Literals and variables appear in many forms.

_literal ::= pub_name
| fresh_name
| _non_temporal_var
| comp_var
| _custom_type_var

_non_temporal_var ::= pub_var
| fresh_var
| msg_var_or_nullary_fun
| nat_var

When appearing in formulas or rules, they have an identifier and a sort.

_non_temporal_var ::= pub_var
| fresh_var
| msg_var_or_nullary_fun
| nat_var

pub_var ::= VARIABLE(('$' (ident: variable_identifier) ('.' natural)?)
| ((ident: variable_identifier) ('.' natural)? ':'

'pub'))↪→

fresh_var ::= VARIABLE(('~' (ident: variable_identifier) ('.' natural)?)
| ((ident: variable_identifier) ('.' natural)? ':'

'fresh'))↪→

msg_var_or_nullary_fun ::= VARIABLE((ident: variable_identifier) ('.'
natural)? (':' 'msg')?)↪→

nat_var ::= ('%' (ident: variable_identifier) ('.' natural)? (':' 'nat')?)
| ((ident: variable_identifier) ('.' natural)? ':'

'nat')↪→

fresh_name ::= '~'' /[^\n']+/ '''
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SAPIC processes also have (optional) types. Moreover, literals in pattern can signify with a = if
they are matched or bound.

comp_var ::= '=' _literal
_custom_type_var ::= custom_var

| any_var
custom_var ::= -1(_literal ':' (ident: variable_type))

Facts do not have to be defined up-front. This will probably change once we implement user-
defined sorts. Facts prefixed with ! are persistent facts. All other facts are linear. There are six
reserved fact symbols: In, Out, KU, KD, Fr, and K. KU and KD facts are used for construction
and deconstruction rules. KU-facts also log the messages deduced by construction rules. Note
that KU-facts have arity 2. Their first argument is used to track the exponentiation tags. See the
loops/Crypto_API_Simple.spthy example for more information.

_facts ::= <(_fact (',' _fact)*)
_fact ::= (fact -> linear_fact)

| ('!' (fact -> persistent_fact))
fact_annotes ::= '[' fact_annote (',' fact_annote)* ']'
fact_annote ::= '+'

| '-'
| 'no_precomp'

facts := fact (',' fact)*
fact := ['!'] ident '(' [msetterm (',' msetterm)*] ')' [fact_annotes]
fact_annotes := '[' fact_annote (',' fact_annote)* ']'
fact_annote := '+' | '-' | 'no_precomp'

Fact annotations can be used to adjust the priority of corresponding proof methods in the heuristics,
or influence the precomputation step performed by Tamarin, as described in Section Advanced
Features.

Formulas are trace formulas as described previously. Note that we are a bit more liberal with
respect to guardedness. We accept a conjunction of atoms as guards.

formula := imp [('<=>' | '�') imp]
imp := disjunction [('==>' | '�') imp]
disjunction := conjunction (('|' | '�') conjunction)* // left-associative
conjunction := negation (('&' | '�') negation)* // left-associative
negation := ['not' | '¬'] atom
atom := '�' | 'F' | '�' | 'T' // true or false

| '(' formula ')' // nested formula
| 'last' '(' node_var ')' // 'last' temporal variable for induction
| fact '@' node_var // action
| node_var '<' node_var // ordering of temporal variables
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| msetterm '=' msetterm // equality of terms
| msetterm ('<<' | '�') msetterm // subterm relation
| node_var '=' node_var // equality of temporal variables
| ('Ex' | '�' | 'All' | '�') // quantified formula

lvar+ '.' formula

lvar := node_var | nonnode_var

Identifiers always start with a letter or number, and may contain underscores after the first character.
Moreover, they must not be one of the reserved keywords let, in, or rule. Although identifiers
beginning with a number are valid, they are not allowed as the names of facts (which must begin
with an upper-case letter).

Full syntax

The following Treesitter-generated eBNF is regularly tested against the files in examples. It includes
the aforementioned rules, and those concerning the process calculus SAPIC+.

extras ::= { multi_comment single_comment /\s|\\\r?\n|\u00A0/ }

conflicts ::= { { pub_var } { fresh_var } { msg_var_or_nullary_fun } {
temporal_var } { nat_var } { pub_var fresh_var msg_var_or_nullary_fun
temporal_var nat_var } { pub_var fresh_var msg_var_or_nullary_fun nat_var } {
accountability_lemma diff_lemma } { lemma diff_lemma } { nary_app
predicate_ref } { nullary_fun nary_app msg_var_or_nullary_fun } }

↪→

↪→

↪→

↪→

externals ::= { multi_comment single_comment }

precedences ::= { { 'NESTED' 'FUNCTION' 'VARIABLE' 'EXPONENTIAL' 'MULTIPLY'
'ADD' 'MUL_SET' 'TUPLE' 'NULLARY_FUN' 'ATOM' 'LOGICAL_NOT' 'EXCLUSIVE_OR'
'LOGICAL_AND' 'LOGICAL_OR' 'LOGICAL_IMPLICATION' 'LOGICAL_IFF'
'CHAIN_CONSTRAINT' } { 'NON_DIFF' 'DIFF' } { 'REPLICATION' 'EVENT' 'CHOICE'
'PROCESS_LET' 'LOOKUP' 'CONDITIONAL' } }

↪→

↪→

↪→

↪→

word ::= ident

rules:
theory ::= 'theory' (ident: theory_name) ('configuration' ':' '"' commandline
'"')? 'begin' _body_item* 'end' /./*↪→

commandline ::= ('--auto-sources' | ('--stop-on-trace' '='
_search_strategy))+↪→

_search_strategy ::= 'BFS' | 'DFS' | 'SEQDFS' | 'bfs' | 'dfs' | 'seqdfs'
_body_item ::= preprocessor | _signature_spec | global_heuristic | tactic |
process | let | export | _rule | restriction | case_test | _lemma |
formal_comment

↪→

↪→

https://tree-sitter.github.io/tree-sitter/
006_protocol-specification-processes.html
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preprocessor ::= ifdef | define | include
ifdef ::= '#ifdef' _ifdef_formula _body_item* ('#else' _body_item*)? '#endif'
define ::= '#define' ident
include ::= '#include' '"' (param -> path) '"'
_ifdef_formula ::= ifdef_nested | ifdef_or | ifdef_and | ifdef_not | ident
ifdef_nested ::= NESTED('(' _ifdef_formula ')')
ifdef_or ::= <LOGICAL_OR(_ifdef_formula '|' _ifdef_formula)
ifdef_and ::= <LOGICAL_AND(_ifdef_formula '&' _ifdef_formula)
ifdef_not ::= LOGICAL_NOT('not' _ifdef_formula)
_signature_spec ::= built_ins | functions | equations | predicates | macros |

options↪→

built_ins ::= 'builtins' ':' built_in (',' built_in)* ','?
built_in ::= 'diffie-hellman' | 'hashing' | 'symmetric-encryption' |

'asymmetric-encryption' | 'signing' | 'bilinear-pairing' | 'xor' | 'multiset'
| 'natural-numbers' | 'revealing-signing' | 'locations-report' |
'reliable-channel' | 'dest-pairing' | 'dest-signing' |
'dest-symmetric-encryption' | 'dest-asymmetric-encryption'

↪→

↪→

↪→

↪→

functions ::= >('functions' ':' _function_sym (',' _function_sym)* ','?)
_function_sym ::= function_untyped | function_typed
function_untyped ::= (ident: function_identifier) '/' (natural: arity) ('['

function_attribute (',' function_attribute)* ','? ']')?↪→

function_attribute ::= 'private' | 'destructor'
function_typed ::= (ident: function_identifier) '(' arguments? ')' ':'

(ident: function_type)↪→

equations ::= >('equations' ('[' 'convergent' ']')? ':' equation (','
equation)* ','?)↪→

equation ::= (_term: left) '=' (_term: right)
predicates ::= ('predicate' | 'predicates') ':' predicate (',' predicate)*
predicate ::= (predicate_def -> '') '<=>' (_formula: formula)
predicate_def ::= (ident: predicate_identifier) '(' arguments? ')'
options ::= 'options' ':' option (',' option)* ','?
option ::= 'translation-state-optimisation' | 'translation-progress' |

'translation-asynchronous-channels' | 'translation-compress-events' |
'translation-allow-pattern-lookups'

↪→

↪→

global_heuristic ::= 'heuristic' ':' (_proof_method_ranking+:
proof_method_ranking)↪→

_proof_method_ranking ::= standard_proof_method_ranking |
oracle_proof_method_ranking | tactic_proof_method_ranking↪→

standard_proof_method_ranking ::=
/[CISPcisp][CISPcisp]?[CISPcisp]?[CISPcisp]?/↪→

oracle_proof_method_ranking ::= ('O' | 'o') ('"' param '"')?
tactic_proof_method_ranking ::= '{' ident '}'
tactic ::= 'tactic' ':' ident presort? ((prio+ deprio*) | (prio* deprio+))
presort ::= 'presort' ':' standard_proof_method_ranking
prio ::= 'prio' ':' ('{' post_ranking '}')? _function+
deprio ::= 'deprio' ':' ('{' post_ranking '}')? _function+
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post_ranking ::= 'smallest' | 'id'
_function ::= or_function | and_function | not_function | std_function
or_function ::= <LOGICAL_OR(_function '|' _function)
and_function ::= <LOGICAL_AND(_function '&' _function)
not_function ::= LOGICAL_NOT('not' _function)
std_function ::= function_name ('"' param '"')*
function_name ::= 'regex' | 'isFactName' | 'isInFactTerms' | 'dhreNoise' |
'defaultNoise' | 'reasonableNoncesNoise' | 'nonAbsurdConstraint'↪→

process ::= 'process' ':' _process
_process ::= _elementary_process | _extended_process | _stateful_process |
inline_msr_process | _nested_process | location_process | predefined_process↪→

_elementary_process ::= binding | output | input | conditional | process_let
| deterministic_choice | non_deterministic_choice | null↪→

_extended_process ::= event | replication
_stateful_process ::= set_state | delete_state | read_state | set_lock |
remove_lock↪→

location_process ::= '(' _process ')' '@' ((_literal | tuple_term):
location_identifier)↪→

inline_msr_process ::= >(premise ('-->' | action_fact) conclusion (';'
_process)?)↪→

_nested_process ::= '(' _process ')'
predefined_process ::= <-1(_term)
binding ::= >('new' _literal (';' _process)?)
output ::= >(('out' '(' _term ',' _term ')' (';' _process)?) | ('out' '('
_term ')' (';' _process)?))↪→

input ::= >(('in' '(' _term ',' _term ')' (';' _process)?) | ('in' '(' _term
')' (';' _process)?))↪→

conditional ::= >CONDITIONAL('if' (_condition: condition) 'then' (_process:
then) ('else' (_process: else))?)↪→

process_let ::= >PROCESS_LET('let' term_eq+ 'in' (_process: in) ('else'
(_process: else))?)↪→

deterministic_choice ::= <CHOICE(_process ('|' | '||') _process)
non_deterministic_choice ::= <CHOICE(_process ('+') _process)
null ::= '0'
event ::= >EVENT('event' _fact (';' _process)?)
replication ::= >REPLICATION('!' _process (';' _process)?)
set_state ::= >('insert' (_term: from) ',' (_term: to) (';' _process)?)
delete_state ::= >('delete' _term (';' _process)?)
read_state ::= >LOOKUP('lookup' (_term: from) 'as' (_lvar: to) 'in'
(_process: in) ('else' (_process: else))? (';' _process)?)↪→

set_lock ::= >('lock' _term (';' _process)?)
remove_lock ::= >('unlock' _term (';' _process)?)
_condition ::= equality_check | lesser_check | predicate_ref
equality_check ::= (_term | _formula) @(1('=')) (_term | _formula)
lesser_check ::= _term ('(<)' | '<<') _term
let ::= 'let' (_term: let_identifier) '=' _process



148 CONTENTS

export ::= 'export' (ident: export_identifier) ':' '"' export_query '"'
_rule ::= rule | diff_rule
rule ::= simple_rule variants?
diff_rule ::= simple_rule 'left' (rule: left) 'right' (rule: right)
simple_rule ::= 'rule' modulo? (ident: rule_identifier) rule_attrs? ':'

rule_let_block? premise ('-->' | action_fact) conclusion↪→

premise ::= '[' _facts? ']'
action_fact ::= '--[' _facts_restrictions? ']->'
conclusion ::= '[' _facts? ']'
variants ::= 'variants' simple_rule (',' simple_rule)*
modulo ::= '(' 'modulo' ('E' | 'AC') ')'
rule_attrs ::= '[' rule_attr (',' rule_attr)* ','? ']'
rule_attr ::= rule_attr_color | 'no_derivcheck' | 'issapicrule' |

rule_process | rule_role↪→

rule_attr_color ::= ('color=' | 'colour=') hexcolor
rule_role ::= 'role' '=' '"' (ident: role_identifier) '"'
rule_process ::= 'process' '=' '"' ident '"'
rule_let_block ::= 'let' rule_let_term+ 'in'
rule_let_term ::= ((msg_var_or_nullary_fun | nat_var): left) '=' (_term:

right)↪→

macros ::= 'macros' ':' macro (',' macro)*
macro ::= (ident: macro_identifier) '(' (_non_temporal_var (','

_non_temporal_var)*)? ')' '=' (_term: term)↪→

embedded_restriction ::= '_restrict' '(' (_formula: formula) ')'
_facts_restrictions ::= <((_fact | embedded_restriction) (',' (_fact |

embedded_restriction))*)↪→

_facts ::= <(_fact (',' _fact)*)
_fact ::= (fact -> linear_fact) | ('!' (fact -> persistent_fact))
fact ::= <((ident: fact_identifier) '(' arguments? ')' fact_annotes?)
fact_annotes ::= '[' fact_annote (',' fact_annote)* ']'
fact_annote ::= '+' | '-' | 'no_precomp'
restriction ::= ('restriction' | 'axiom') (ident: restriction_identifier)

restriction_attr? ':' '"' (_formula: formula) '"'↪→

restriction_attr ::= '[' ('left' | 'right') ']'
case_test ::= 'test' (ident: test_identifier) ':' '"' (_formula: formula) '"'
_lemma ::= lemma | diff_lemma | accountability_lemma | equiv_lemma |

diff_equiv_lemma↪→

lemma ::= 'lemma' modulo? (ident: lemma_identifier) diff_lemma_attrs? ':'
trace_quantifier? '"' (_formula: formula) '"' (_proof_skeleton:
proof_skeleton)?

↪→

↪→

lemma_attr ::= 'sources' | 'reuse' | 'use_induction' | ('output=' '['
language (',' language)* ']') | ('hide_lemma=' ident) | ('heuristic='
(_proof_method_ranking+: proof_method_ranking))

↪→

↪→

language ::= 'spthy' | 'spthytyped' | 'msr' | 'proverif' | 'deepsec'
diff_lemma ::= 'diffLemma' modulo? (ident: lemma_identifier)

diff_lemma_attrs? ':' (_proof_skeleton: proof_skeleton)?↪→
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diff_lemma_attrs ::= '[' (diff_lemma_attr | lemma_attr) (',' (diff_lemma_attr
| lemma_attr))* ','? ']'↪→

diff_lemma_attr ::= 'left' | 'right'
accountability_lemma ::= 'lemma' (ident: lemma_identifier) ':' (ident:
test_identifier) (',' (ident: test_identifier))* ('account' | 'accounts')
'for' '"' (_formula: formula) '"'

↪→

↪→

equiv_lemma ::= 'equivLemma' ':' (_process: first) (_process: second)
diff_equiv_lemma ::= 'diffEquivLemma' ':' _process
trace_quantifier ::= 'all-traces' | 'exists-trace'
_proof_skeleton ::= solved | mirrored | by_method | method_skeleton | cases
solved ::= 'SOLVED'
mirrored ::= 'MIRRORED'
by_method ::= 'by' _proof_methods
method_skeleton ::= _proof_methods (_proof_skeleton: proof_skeleton)
cases ::= case ('next' case)* 'qed'
case ::= 'case' (ident: case_identifier) (_proof_skeleton: proof_skeleton)
_proof_methods ::= >(proof_method | step+)
proof_method ::= 'sorry' | 'simplify' | ('solve' '(' constraint ')') |
'contradiction' | 'induction' | 'rule-equivalence' | 'backward-search' |
'ATTACK'

↪→

↪→

step ::= 'step' '(' proof_method ')'
constraint ::= premise_constraint | action_constraint | chain_constraint |
disjunction_split_constraint | eq_split_constraint↪→

premise_constraint ::= _fact '�' natural_subscript temporal_var
action_constraint ::= ATOM((_fact: fact) '@' ((temporal_var_optional_prefix
-> temporal_var): variable))↪→

chain_constraint ::= '(' temporal_var ',' natural ')' '~~>' '(' temporal_var
',' natural ')'↪→

disjunction_split_constraint ::= CHAIN_CONSTRAINT((_formula: formula) (('||'
| '�') (_formula: formula))+)↪→

eq_split_constraint ::= 'splitEqs' '(' natural ')'
_term ::= tuple_term | mset_term | nested_term | nullary_fun | binary_app |
nary_app | _literal↪→

tuple_term ::= TUPLE('<' ((mset_term): term) (',' (mset_term: term))* '>')
mset_term ::= <MUL_SET((nat_term: left) ('++' | '+') (nat_term: right))
nat_term ::= <ADD((xor_term: left) '%+' (xor_term: right))
xor_term ::= <EXCLUSIVE_OR((mult_term: left) ('XOR' | '�') (mult_term: right))
mult_term ::= <MULTIPLY((exp_term: left) '*' (exp_term: right))
exp_term ::= >EXPONENTIAL((_term: base) '^' (_term: exponent))
nested_term ::= NESTED('(' mset_term ')')
nullary_fun ::= NULLARY_FUN((ident: function_identifier) | ((ident:
function_identifier) '(' ')'))↪→

binary_app ::= FUNCTION((ident: function_identifier) '{' (_term: argument)
(',' (_term: argument))*? '}' (_term: argument))↪→

nary_app ::= FUNCTION((ident: function_identifier) '(' arguments ')')
arguments ::= ((_term | temporal_var): argument) (',' (_term: argument))*
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_literal ::= pub_name | fresh_name | _non_temporal_var | comp_var |
_custom_type_var↪→

_non_temporal_var ::= pub_var | fresh_var | msg_var_or_nullary_fun | nat_var
pub_var ::= VARIABLE(('$' (ident: variable_identifier) ('.' natural)?) |

((ident: variable_identifier) ('.' natural)? ':' 'pub'))↪→

fresh_var ::= VARIABLE(('~' (ident: variable_identifier) ('.' natural)?) |
((ident: variable_identifier) ('.' natural)? ':' 'fresh'))↪→

msg_var_or_nullary_fun ::= VARIABLE((ident: variable_identifier) ('.'
natural)? (':' 'msg')?)↪→

temporal_var ::= ('#' (ident: variable_identifier) ('.' natural)?) | ((ident:
variable_identifier) ('.' natural)? ':' 'node')↪→

nat_var ::= ('%' (ident: variable_identifier) ('.' natural)? (':' 'nat')?) |
((ident: variable_identifier) ('.' natural)? ':' 'nat')↪→

comp_var ::= '=' _literal
_custom_type_var ::= custom_var | any_var
custom_var ::= -1(_literal ':' (ident: variable_type))
any_var ::= -1(_literal ':' 'ANY')
temporal_var_optional_prefix ::= NULLARY_FUN(('#'? (ident:

variable_identifier) ('.' natural)?) | ((ident: variable_identifier) ('.'
natural)? ':' 'temporal'))

↪→

↪→

pub_name ::= ''' /[^\n']+/ '''
fresh_name ::= '~'' /[^\n']+/ '''
_formula ::= iff | imp | disjunction | conjunction | negation |

nested_formula | _temporal_variable_operation | action_constraint | term_eq |
subterm_rel | quantified_formula | atom | predicate_ref | pre_defined

↪→

↪→

iff ::= <LOGICAL_IFF((_formula: left) ('<=>' | '�') (_formula: right))
imp ::= <LOGICAL_IMPLICATION((_formula: left) (@(1('==>')) | '�') (_formula:

right))↪→

disjunction ::= <LOGICAL_OR((_formula: left) ('|' | '�') (_formula: right))
conjunction ::= <LOGICAL_AND((_formula: left) ('&' | '�') (_formula: right))
negation ::= LOGICAL_NOT(('not' | '¬') (_formula: formula))
nested_formula ::= ATOM('(' _formula ')')
_temporal_variable_operation ::= temp_var_induction | temp_var_order |

temp_var_eq↪→

temp_var_induction ::= ATOM('last' '(' temporal_var ')')
temp_var_order ::= ATOM(((temporal_var_optional_prefix -> temporal_var):

left) '<' ((temporal_var_optional_prefix -> temporal_var): right))↪→

temp_var_eq ::= ATOM(((temporal_var_optional_prefix -> temporal_var): left)
'=' ((temporal_var_optional_prefix -> temporal_var): right))↪→

term_eq ::= ATOM((_term: left) '=' (_term: right))
subterm_rel ::= ATOM((_term: left) ('<<' | '�') (_term: right))
quantified_formula ::= ATOM(('Ex' | '�' | 'All' | '�') (_lvar+: variable) '.'

(_formula: formula))↪→

atom ::= ATOM('�' | 'F' | '�' | 'T')
_lvar ::= temporal_var | _non_temporal_var
predicate_ref ::= FUNCTION((ident: predicate_identifier) '(' arguments? ')')
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pre_defined ::= NULLARY_FUN(ident)
hexcolor ::= (''' @('#')? @(/[0-9a-fA-F]{1,6}/) ''') | (@('#')?
@(/[0-9a-fA-F]{1,6}/))↪→

ident ::= /[A-Za-z0-9][a-zA-Z0-9_*]*/
param ::= /[^"]*/
export_query ::= /(\\"|[^"])*/
natural ::= /[0-9]+/
natural_subscript ::= ('�' | '�' | '�' | '�' | '�' | '�' | '�' | '�' | '�' | '�')+
formal_comment ::= (ident: comment_identifier) @('{*'
/[^*]*\*+([^}*][^*]*\*+)*/ '}')↪→

References
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