
Modeling and Analyzing Security Protocols
with Tamarin: A Comprehensive Guide

David Basin Cas Cremers Jannik Dreier Ralf Sasse

May 14, 2025
Draft v0.9.5

Preface

Security protocols, as an object of study, have been likened to fruit flies as studied in
genetic research. The objects under consideration are small, ubiquitous, and exhibit
surprising complexity. For security protocols, even relatively simple protocols may
have surprising behaviors. And as they serve as the cornerstone for security in
distributed settings, like within the Internet, their proper functioning is critical.

Tamarin is an open-source analysis tool for security protocols. Given a specification
of a protocol, a threat model describing the capabilities of possible adversaries, and
the protocol’s desired security properties, Tamarin either verifies the protocol or
can provide counterexamples witnessing attacks. Tamarin is a robust and powerful
analysis tool: it has been under development for over a decade and has reached a state
of maturity where it can be applied to model and analyze a wide range of real-world
protocols. It is now one of the leading tools in this domain, with a large, active user
community spanning both academia and industry.

Tamarin’s foundations are based on decades of research in theoretical computer
science, covering topics such as symbolic reasoning, deduction, and equational
reasoning. While this book provides a high-level overview of Tamarin’s underlying
theory, its emphasis is on applications: how to apply Tamarin to security problems
that matter. In writing this book, our objective is thereby to help both researchers
and practitioners to gain a general understanding of how Formal Methods tools like
Tamarin can be used to analyze and improve the quality of real-world security
protocols. Moreover, we specifically showcase Tamarin and provide guidance on its
usage. In this sense, this book provides a user manual for Tamarin. But it goes far
beyond that, highlighting Tamarin’s underlying theory and its use in modeling and
applications. This includes:

1. How to specify the cryptographic core of protocols in a way amenable to automated
reasoning.

v

vi Preface

2. How to model adversaries who try to defeat the protocol, for example adversaries
who control the network and actively spoof messages, malicious insiders, or
adversaries that can compromise agents.

3. How to formalize security properties, for example to specify that keys are secrets
or that agents have authenticated each other’s identity or agree on critical data like
cryptographic keys.

4. How to use Tamarin to analyze protocols, namely to prove that the protocol as
specified (1), when running in the adversarial environment (2), satisfies its security
properties (3). Alternatively, when the protocol is not secure, to use Tamarin to
find attacks that witness this.

Extended examples are given that illustrate Tamarin’s use and illuminate those
features that are helpful for expert usage.

Intended audience and usage

This book emphasizes practical aspects of security protocol verification. Its intended
audience is security researchers and engineers who work with such protocols and
wish to learn how to rigorously specify and analyze them. This includes information
security students learning about these protocols, industrial practitioners who design
their own proprietary protocols, engineers involved in protocol standardization and
related activities, and even teams that evaluate protocol designs in some fashion. We
have written this book with this diverse audience in mind. As background, we assume
some basic knowledge of formal modeling, e.g., modeling systems as state transition
systems, as well as applied cryptography and its applications. However, we have kept
other prerequisites to a minimum.

This book can be used for teaching, either within a course on security protocols or as
part of a more general Information Security course. Parts of the book have been used
in both bachelors-level and masters-level courses at European universities including
ETH Zürich, Saarland University, and Université de Lorraine. It has also been used
for industry courses and self-study. We recommend that self-study readers who are
interested in using Tamarin hands-on should read at least the first four parts of the
book, through Chapter 11.

Supplementary material for the book is available online [12]. The Tamarin tool itself
is available for download at https://tamarin-prover.com. The book’s website also
provides all the Tamarin input files containing the examples presented in the book as
well as other resources including teaching material, slides, problem sets, and worked
examples. Most of this material is available under a CC-BY license, enabling re-use
as long as the source is attributed.

Finally, Tamarin not only has an active user community, it also has an active
developer community. It is a living system, undergoing evolution and improvement.

https://tamarin-prover.com

Preface vii

This has implications for this book in that there may be minor deviations from what
is described here and what the current version of the system supports. For example,
there may be improvements to Tamarin’s user interface, whereby Tamarin’s actual
output may differ slightly from what is presented here. Or automation support
may be improved, leading to new options and commands. While we will work to
keep this book up-to-date going forward, for the latest features, the reader may
consult Tamarin’s documentation available at the URL https://tamarin-prover.com,
mentioned above.

https://tamarin-prover.com

Acknowledgments

Work on Tamarin has been ongoing for over a decade and has been a truly international
effort spanning many countries. Its development started at ETH Zürich as a successor
to the Scyther tool, and afterwards additional groups joined at the University of
Oxford, the CISPA Helmholtz Center for Information Security, CNRS, Inria, and
Université de Lorraine. We would especially like to thank Benedikt Schmidt and
Simon Meier for their pioneering work on the theory underlying Tamarin at the
project’s start and for building the first implementation, much of which is still in use
today.

We also thank the following security researchers and colleagues for their substantial
contributions to Tamarin and its applications: Mathias Aurand-Augier, Deni Begai,
Katriel Cohn-Gordon, Yann Colomb, Véronique Cortier, Adrian Dapprich, Alexander
Dax, Martin Dehnel-Wild, Stéphanie Delaune, Charles Duménil, Ilkan Esiyok, Sofia
Giampietro, Lucca Hirschi, Xenia Hofmeier, Yavor Ivanov, Charlie Jacomme, Robert
Künnemann, Elise Klein, Steve Kremer, Felix Linker, Philip Lukert, Kevin Milner,
Kevin Morio, Maïwenn Racouchot, Saša Radomirović, Lara Schmid, Christoph
Sprenger, Cedric Staub, Wenjia Tang, Hugo Thevenin, Valentin Thiebaux, Yuri
Valentin, Jorden Whitefield, Felix Yan, and CISPA’s Scientific Engineering team.
Moreover, we thank the many members of our groups for their feedback on parts of
this book.

Finally we thank Emma Basin, Solvej Basin, Daniel Cremers, Nathalie Cremers, Yen
Ha Dang, Alix Dreier, Lilou Dreier, Oscar Dreier, Mathilde Gilbert, Lone Kølvrå
Rønberg, Fritz Sasse, and Heidrun Sasse for their emotional and logistical support,
and enduring patience during this multi-year project.

ix

Contents

Part I Introduction and Motivation

1 Introduction . 3
1.1 The setting . 3
1.2 Tamarin . 5
1.3 Application domain . 9

2 An Example . 11
2.1 A simplified version . 11
2.2 The real deal . 14
2.3 Summary . 25

Part II Modeling Foundations

3 Modeling Foundations . 29
3.1 Multi-set rewriting . 29
3.2 Semantics of rules . 39

4 Modeling State Machines . 43
4.1 A simple challenge-response protocol . 45
4.2 Further concepts . 49

5 Specifying Trace Properties in Tamarin . 53
5.1 Syntax . 54
5.2 Semantics of trace formulas . 56
5.3 Secrecy on a toy example . 57
5.4 Authentication on the toy example . 59
5.5 Modeling a public key infrastructure . 60
5.6 Simplified Signed Diffie-Hellman Example . 60
5.7 Modeling malicious or compromised agents . 62
5.8 Flavors of secrecy . 65

xi

xii Contents

5.9 A hierarchy of authentication properties . 66
5.10 Additional features for specifying properties . 72

Part III The Tamarin System

6 A First Glimpse Under the Hood . 81
6.1 Running Tamarin . 81
6.2 How Tamarin works . 86
6.3 How dependency graphs relate to traces . 90
6.4 The constraint-solving algorithm . 92
6.5 Dependency graph visualizations . 101
6.6 Heuristics . 104
6.7 Handling equations . 107
6.8 Adversary deductions . 109

7 Built-in Equational Theories . 121
7.1 Syntactic built-ins . 122
7.2 Algorithmic built-ins . 125

8 Pre-computation and Deconstructions . 131
8.1 Pre-computations and sources . 131
8.2 Sources lemmas . 135
8.3 Auto-sources . 135
8.4 Using sources lemmas . 136

9 Lemma Annotations . 141
9.1 Induction . 141
9.2 Reuse and hiding . 144
9.3 An example: a simple hash chain . 145

Part IV Using Tamarin in Practice

10 Basic Modeling . 151
10.1 Modeling with state facts . 151
10.2 Macros and conditional blocks . 160
10.3 Threat modeling . 163
10.4 Channel types . 167
10.5 How do I know my model makes sense? . 169

11 Common Workflows . 171
11.1 Tamarin’s user interfaces . 171
11.2 Exists-trace lemmas . 175
11.3 Further workflows . 177
11.4 Error messages and solutions . 179
11.5 Guardedness of lemmas . 187
11.6 Termination and memory exhaustion . 188

Contents xiii

11.7 Extensions and tools . 193
11.8 Common questions . 193

12 Case Study: 5G-AKA . 195
12.1 Overview of 5G-AKA . 195
12.2 Modeling 5G-AKA in Tamarin . 199
12.3 Conclusions and general insights . 213

Part V Advanced Topics

13 Observational Equivalence . 217
13.1 Observational equivalence in Tamarin . 217
13.2 Modeling and analysis workflow . 219
13.3 A simple voting protocol . 220

14 User-Specified Equational Theories . 231
14.1 Subterm-convergent equational theories . 231
14.2 Beyond subterm-convergence . 232
14.3 Current limitations for equational theories . 233

15 Advanced Modeling of Primitives . 235
15.1 Digital signature schemes . 235
15.2 Other primitives . 244

16 Reducing Proof-Construction Time . 249
16.1 Changing priorities of facts using label prefixes 249
16.2 Changing priorities using + and - modifiers . 250
16.3 Tactics . 251
16.4 Oracles . 254

17 Analyzing Protocol Families . 259
17.1 Noise Protocol Framework . 259
17.2 Analysis approach . 262
17.3 Example results for Noise . 265

Part VI Outlook

18 Impact in Practice . 269
18.1 TLS 1.3 . 269
18.2 5G-AKA . 271
18.3 EMV . 273
18.4 Summary . 276

References . 277

Part VII Appendix

xiv Contents

19 Dependency Graph Example . 291

20 Syntax . 295

21 Exercises . 305
21.1 Simple Protocols . 305
21.2 A Large Protocol: PACE . 312
21.3 Solutions . 315

Index . 319

Part I

Introduction and Motivation

Chapter 1

Introduction

1.1 The setting

Security protocols provide a basis for secure computing in distributed environments.
We use them daily, without much thought. For example, we use TLS every time our
browser connects securely to a webserver on the Internet or our devices download
software updates. We use IPSec to create virtual private networks, SSH for secure
remote login, and the Signal, WhatsApp, and iMessage protocols for messaging.
Behind the scenes we may be using Kerberos, OpenID Connect, or OAuth2, for single
sign-on or access delegation. And when we make payments with our credit cards,
perhaps stored on our phone, we are using the EMV protocol of Europay, Mastercard,
and Visa.

What these protocols have in common is that they provide services that must meet
stringent security requirements, for example, authenticating entities, exchanging
secrets, setting up secure channels, or making secure payments. They accomplish
this (or so we hope) using cryptography. For this reason, security protocols are also
known as cryptographic protocols although, strictly speaking, the class of security
protocols is larger, as they may use other means than cryptography to achieve security,
for example, security measures in the physical world.

As the above examples suggest, the applications that employ security protocols are
often security critical and they must therefore operate correctly. For example, only
authorized parties should be able to log in, access resources, or make payments with
our credit cards. Unfortunately, security protocols are difficult to get right, and the
security community has seen countless protocols proposed and implemented, only to
be broken afterwards. Less well known is that many flawed protocols are not “broken”
in a technical sense for the simple reason that they lack a clear specification of what
they should actually do in the first place!

This last point is critical. Protocols are distributed algorithms and security protocols
are, by definition, designed with security objectives in mind. But like many algorithms,

3

4 1 Introduction

they are often implemented in practice without a proper specification of their objectives.
Lacking a specification, the question of whether a security protocol achieves its
objectives cannot be answered, as the question itself is ill-defined. It is like asking “is
this program correct?” without first stating what the program should do.

In addition to the necessity of specifying a security protocol’s intended properties,
one must also be precise about that protocol’s threat model, that is, which kinds of
adversaries the protocol should resist. This is critical as one should assume that a
security protocol is operated in hostile, adversarial environments, reflecting the sad
reality where there are indeed hostile, malicious adversaries out there. Without a
specification of what the adversary can do, the question of security is again ill-defined.
For example, data on a computer might be secure (e.g., unreadable) against a network
adversary when access is protected by a properly functioning Virtual Private Network,
but completely insecure against an adversary who can gain physical access to the
computer and extract and analyze its hard drive. In the case of security protocols, we
typically consider powerful adversaries who can actively interfere with the protocol
and who can even corrupt agents, learning their secrets. We will see that even in such
cases, it is still possible to achieve some security properties.

Specifying a security protocol, the adversary, and the desired security properties is just
the starting point. We ultimately want to know whether the protocol is actually secure
in this setting. Note in this regard that testing or simulation is insufficient, as such
methods only check whether the protocol satisfies its specification for some selected
test cases and selected adversary actions. In contrast, security should entail that
the property holds for every possible execution (or concurrent executions) between
agents running the protocol in combination with any possible interference from the
adversary.

This distinction between the analysis of some versus all scenarios is significant, and a
clever adversary will do everything within its powers to defeat a protocol, including
actions that we as testers might not envision. The strongest guarantees come from
a rigorous mathematical proof that covers all of the infinitely many possibilities.
Alternatively, when the protocol is insecure, we would like to get a counterexample —
in the parlance of security, an attack — showing why the specified property does not
hold. Effectively carrying out this kind of analysis on real-world protocols requires
appropriate tool support to handle their complexity.

Let us summarize the above discussion. Figure 1.1 provides an abstract account of
this setting. The protocol correctness problem is defined by giving:

1. the description of the protocol, depicted here by Alice and Bob exchanging
messages,

2. a threat model describing a class of adversaries against which the protocol should
be secure, depicted here by the set of devils, and

1.2 Tamarin 5

Alice Bob Alice Bob

Fig. 1.1: Setting for Security Protocol Verification

3. a specification of the protocol’s desired security property, depicted here by the
adversary not being able to see, say, a session key that has been set up by the
protocol between Alice and Bob and is intended to be confidential.

Given a mathematical formalization of these three things, the objective is to establish
the protocol’s correctness, depicted in Figure 1.1 by the |= relation. Namely, for
all adversaries in the class of adversaries considered, no matter how the adversary
interferes with the protocol’s runs (depicted by the messages exchanged in the figure),
the protocol still has the desired security property. And when this is not the case, we
would then like to obtain a counterexample. Tools such as Tamarin, described next,
help us with this analysis task.

1.2 Tamarin

1.2.1 A model-checker based on constraint solving

We start by describing the wider context of Formal Methods tools. Formal Methods is
that part of computer science concerned with assigning formal meaning, also called a
semantics, to systems, so that one can rigorously reason about their behavior using
mathematics and logic. The Formal Methods community has built associated tools
that support the specification and analysis of a wide range of systems, from hardware
to software. Examples include circuits, sequential programs, concurrent systems, and
protocols. In some critical domains where mistakes are particularly costly, such as
hardware development, the use of verification tools is not just well established, it now
is commonplace [3].

Verification tools are commonly classified as either theorem provers or model checkers.
Theorem provers construct explicit proofs using the rules of a formal logic, such as
first-order logic or higher-order logic. In contrast, model checkers use algorithms to
determine provability and they often return counterexamples when properties are not
provable. However, this classification is somewhat rough. Tamarin, in particular,

6 1 Introduction

property P

system S

constraint
from ¬P

constraints
from S

dedicated
constraint solver

solution exists: Attack

no solution exists: Proof

run out of time or memory

Tamarin proverinput file

provide hints
for the prover

(e.g. invariants)

interactive mode
(inspect or guide partial proof)

Fig. 1.2: Tamarin Schematic

both constructs proofs and uses algorithms that help automate proof construction and
counterexample finding.

Turning now to Tamarin, Figure 1.2 illustrates its usage, which is typical for a
model-checking tool. Tamarin takes as input a specification of a system S, which
is also known as a model as it constitutes a mathematical model of the system. For
security protocols, S would comprise both a protocol model and an adversary model.
Tamarin also takes as input a specification of the desired property P. Note that we use
the terms specification and model mostly interchangeably as our models constitute
behavioral specifications of the protocol and adversary.

At its heart, Tamarin is a constraint solver that searches for behaviors that are
consistent with the system description S and the negation of the property P. These
are system behaviors that violate the property and hence represent attacks. As the
underlying verification problems are undecidable [62], Tamarin cannot provide
a decision procedure that terminates on all inputs. Hence there are three possible
outcomes when running the system, depicted in the figure.

1. Tamarin finds a behavior satisfying all the constraints. This represents an attack
on the protocol.

2. Tamarin produces a proof that the constraints are inconsistent. This means that
there is no possible attack and the protocol is therefore secure. This proof can be
produced automatically, or interactively with user support.

3. Tamarin fails to terminate and so the result is inconclusive. We do not learn
which case holds: whether the protocol is secure or there is an attack.

1.2 Tamarin 7

Tamarin’s underlying proof rules provide a semi-decision procedure for constraint
satisfaction. Hence, if there is an attack on the protocol and if Tamarin were to
be run long enough (perhaps with user guidance), then it would terminate with an
attack (Case 1). However, in some practical cases, for both falsification (Case 1) and
verification (Case 2), Tamarin may run out of memory or the user may run out
of patience and the results are then inconclusive (Case 3). Fortunately, Tamarin
provides means for the user to inspect proof states and influence how proofs are
constructed, which can enable, or speed up, termination.

1.2.2 Modeling languages

As explained in Section 1.1, reasoning about a protocol’s correctness requires
specifying the protocol, the adversary, and the protocol’s desired properties. To
support this, Tamarin features two expressive modeling languages. The first is a
language for system modeling based on multiset rewriting with equations. This
language is Turing-complete and can formalize any system, including its adversaries,
that can be modeled as a transition system with a computable transition relation. This
is very general and can be used to formalize distributed systems such as protocols
where (i) a state of the transition system is a multiset that models the distributed states
of each of the protocol participants, the adversary, and the communication channels,
and (ii) the transitions model how the state can evolve, e.g., as messages are sent and
received by the different participants and the adversary. Moreover, one may specify
equational theories, which are useful for formalizing cryptographic operators via
equations. For example, for security protocols based on Diffie-Hellman key exchange,
one would leverage equations expressing properties about modular exponentiation,
such as (𝑔𝑥)𝑦 = (𝑔𝑦)𝑥 .

Tamarin has a second modeling language for specifying properties of protocols,
based on sorted first-order logic, supporting quantification over time points. This
logic is interpreted over the finite traces of the transition system specified using
multiset rewriting. One uses it to specify properties like “if the initiator A accepts
a session key at some time point (during a run of the protocol) then the adversary
has not learned it at any other time point.” This logic is expressive and can specify,
for example, a wide variety of safety properties expressing that nothing bad can ever
happen during protocol execution. Hence, in combination with the system modeling
language, one can express nuanced notions of security where properties hold even
when the adversary is a malicious insider, or can compromise agents in different,
precisely defined ways.

Tamarin also offers an alternative input language for modeling systems through
its SAPIC module [34, 79]. This language is based on the applied-Pi calculus [1],
however its detailed explanation is beyond the scope of this book.

Finally, Tamarin can be used to specify a pair of systems and to verify that they
satisfy a notion of equivalence called observational equivalence. This equivalence is

8 1 Introduction

useful for expressing security properties such as strong notions of secrecy, privacy
properties (e.g., of voting and auctions), and game-based notions such as ciphertext in-
distinguishability in the symbolic setting. We will describe observational equivalence
and its applications further in Chapter 13.

1.2.3 Usage in protocol and system development

Tamarin is not just a research tool. It has been designed to help engineers build
better security protocols and systems. We provide here some general comments on
where Tamarin can be used in the system development process.

Tamarin’s focus is on analyzing designs, not implementations. It is therefore
invaluable when developing security protocols. In particular, Tamarin provides
protocol designers with a way to analyze their proposed protocols and find and
correct any errors during the protocol design phase. The tool also supports exploring
design options and comparing design alternatives; we will give an example of this
in Section 17.1. Tamarin naturally has an important role to play in the system
verification and validation phase as its proofs demonstrate that the protocol, as
designed, satisfies its specification, no matter what the adversary does, within the
adversary’s specified capabilities.

We emphasize that Tamarin provides design-level guarantees, and an implementation
may deviate from its design or introduce new errors that adversaries can exploit.
Establishing the conformance of implementations to Tamarin models and, more
generally, carrying out code-level verification is outside of this book’s scope. However,
note that it is possible to use Tamarin models for these purposes. Namely, one can
(1) automatically translate a Tamarin protocol model into behavioral specifications
for the implementations of the different protocol roles and (2) verify implementations
of the roles (e.g., clients, servers, etc.) against these specifications as well as verify
the absence of other kinds of errors such as memory corruption or the leakage of
keys. For details on how this is done in a sound and effective way and examples of
applications of this approach, including verifying the official Go implementation of
the WireGuard VPN key exchange protocol, we refer the reader to [5].

Finally, Tamarin, and tools like it, can play an important role in standardization
and certification. Using Tamarin necessitates a high degree of specification hygiene
in that the protocol, the adversary, and the desired security properties must all be
formally documented. The proofs then provide rigorous, mathematical evidence that
the properties hold. Indeed, there have been recent proposals [22,95] that the security
protocols standardized by organizations should be accompanied by specifications
and machine-checked proofs. In this book, we show how this can be accomplished
and also highlight some standards where formal modeling and analysis led to their
improvement.

1.3 Application domain 9

1.3 Application domain

Tamarin is a general purpose model checker and is not restricted to analyzing security
protocols. However this is where its strength lies, given its built-in support for solving
constraints that capture possible adversary deductions about cryptographic messages.

Tamarin has been applied to a wide range of security protocols by users in both
academia and industry. Table 1.1 provides an overview of some of the previous
applications explored by the Tamarin community. These include traditional security
protocols where Alice and Bob authenticate each other or exchange a session key.
But they also go far beyond traditional security protocols and come from diverse
problem domains including distance-bounding, e-voting, and secure routing.

Key Exchange
Naxos [102]
Signed Diffie-Hellman [102]
Station-to-Station [102]
KEA+ [102]
IKEv2 [65, 94]
Wireguard [56, 67]
PQ-Wireguard [71]
Noise protocol family [67]
Group protocols
GDH [103]
TAK [103]
(Sig)Joux [103]
STR [103]
Identity-based KE
RYY [103]
Scott [103]
Chen-Kudla [103]
E-voting (Hyperproperties)
Alethea [17]
Belenios [9]
Bulletin boards [70]
Selene [30]

Authentication
WS-Security [74]
ACME (Let’s Encrypt) [74]
Industrial
DNP3-SAv5 (Grid) [43]
MODBUS [59]
OPC-UA [59]
Distance Bounding
Brands and Chaum [86,87]
Meadows et al. [86, 87]
Hancke and Kuhn [86, 87]
Swiss-Knife [86, 87]
Kim and Avoine [86, 87]
Payment
EMV (Chip-and-PIN,
contactless) [18, 24, 100]
Vehicular
V2X revocation [112]
Secure routing
DRKey (SCION) [47]
PKI
ARPKI (incl. global
state) [13, 20]

Large Case Studies
TLS 1.3 [45, 46]
IEEE 802.11 WPA2
(WiFi) [50]
5G-AKA [23]
5G handover [96]
SPDM 1.2 [40, 41]
Apple iMessage PQ3 [83]
Non-monotonic global state
Keyserver [88]
Envelope [88]
Exclusive secrets [88]
Contract signing [79]
TESLA1 [88]
PKCS#11 [51, 79]
YubiKey [80]
YubiHSM [80]
Anonymous Attestation [113]
TPM 2.0 [111]
Transparency
KUD/DECIM (incl. global
state) [115]

Table 1.1: Examples of protocols modeled and analyzed using Tamarin

We will give examples of protocols throughout this book. In Chapter 18 we will
also highlight three success stories, describing larger, impactful applications of
Tamarin. These three examples, TLS 1.3, 5G-AKA, and EMV were each developed
by some subset of this book’s authors together with other colleagues. We emphasize
though that there are many other impactful examples, not covered here, by other
users who have independently applied Tamarin to ambitious, large-scale protocols.

10 1 Introduction

These include payment systems [100], e-voting systems [9], and distance-bounding
protocols [86].

Chapter 2

An Example

To further motivate Tamarin’s use and to illustrate some of the pitfalls of informal
reasoning, let us look at an actual security protocol. We chose a relatively simple
protocol for entity authentication where two parties, with the help of a trusted third
party, authenticate each other’s identity and also establish a shared session key.

Many such protocols have been proposed in the past and the one we selected was
proposed as part of an existing standard: ISO/IEC 9798 [21, 72]. This standard
was put forth by ISO (the International Organization for Standardization) and IEC
(the International Electrotechnical Commission), who jointly provide standards for
Information Technology. This standard describes a family of protocols for entity
authentication, which are widely used and are even mandated by numerous other
standards that require entity authentication as a building block. Examples include
the Guidelines on Algorithms Usage and Key Management [64] by the European
Committee for Banking Standards and the ITU-T multimedia standard H.235 [73].

Although the protocol we present is relatively simple compared to other modern
protocols, it involves numerous options and its correctness is not obvious. Hence
we start first with a simplified version of the protocol as a warm up. We also use
it to introduce basic notions and syntactic conventions needed for more complex
examples.

2.1 A simplified version

Consider a protocol where two agents, call them A and B, who wish to authenticate
each other and establish a shared key sesk with the help of a trusted third party called
T. In practice T will be a key server who generates session keys for the authenticating
parties. We assume that A and B each share a symmetric key with T prior to the
protocol’s start so they can securely communicate with T. In contrast, we do not

11

12 2 An Example

assume that A and B share any secrets with each other and the point of the protocol is
to establish a session key between them.

As notation, we denote a symmetric key shared between agents A and B by k(A,B).
We use the binary function symbol senc to denote symmetric encryption, writing
senc(m,k) for the symmetric encryption of the message m with the key k. We use
angled brackets to indicate the tupling of messages, e.g, <m1,m2>. However, in some
cases, as in the protocol that follows, we will simplify notation by omitting some
brackets and just using commas to indicate tupling.

With the above conventions, our simplified protocol can be written in an informal
“Alice-and-Bob” notation as follows.
1. A -> T: A,B
2. T -> A: senc(<sesk,B>,k(A,T)),

senc(<sesk,A>,k(B,T))
3. A -> B: senc(<sesk,A>,k(B,T))

Before describing what the protocol does, we expand on the notation and associated
conventions used. The protocol above is presented in what is often called “Alice-
and-Bob” notation as, in the cryptographic folklore, the two parties wishing to
establish a key are often named Alice and Bob. However, protocol descriptions
generally are intended to describe steps that can be taken by any agents, not just
those specifically named Alice and Bob. Hence the protocol description constitutes a
template where A and B are variables, effectively denoting protocol roles, rather than
hard-coded agent names. Namely, A is the initiator role, B is the responder role, and
T is the trusted third-party role. In reality, agents like Alice, Bob, and Charlie may
execute the protocol in multiple sessions, instantiating these variables with their own
identities and the identity of their intended partners. Nevertheless, when describing
the protocol’s steps, we might gloss over these distinctions and write things such as
“A sends a message that B receives”, whereas what is actually meant is that “the agent
playing in the role A sends a message received by the agent playing in the role B.”

The above distinction between agentsand rolesis a potential source of confusion for
protocol newcomers. Unfortunately the use of A and B to name both agents (shorthand
for Alice and Bob) and roles is now long established in the security protocol literature.
It would have been clearer to give the roles more descriptive names like the initiator
role I, the responder role R, the server role S, etc. and use different terms, such as
alice or a to name the agents, thereby making this distinction readily apparent. We
will (for the most part) stick with standard Alice-and-Bob notation, using context to
disambiguate whether the role or the agent is intended. Where we wish to make this
completely explicit we will use lower-case strings for agent names, like a.

Keeping the above conventions in mind, we now turn to how the protocol is intended
to work. We can describe the three steps as follows.

Step 1: A sends T its name and the name of the intended recipient B.

Step 2: T generates a fresh session key sesk. In practice, T would use a pseudoran-
dom number generator to generate this. The details associated with such auxiliary

2.1 A simplified version 13

steps are, however, often omitted in Alice-and-Bob protocol descriptions. T pairs
sesk with B’s name in a first message and A’s name in a second message and then
encrypts these messages with K(A,T) and K(B,T), respectively. T then sends the
paired result to A. Upon receiving the pair, A decrypts the first half of the message
to check that its communication partner is the same B that A named in Step 1.
This check is left implicit in Alice-and-Bob notation: parties generally check the
messages they receive against their expectations. No checks can be performed on
the second message, as it is ciphertext that A cannot decrypt.

Step 3: A forwards the second message, the ciphertext, to B. B can decrypt this and
thereby sees that its communication partner is A. Moreover, B learns the session
key sesk, which A learned in the previous step. Hence both parties can use this
key to secure future communications.

The above steps are fairly typical for a protocol that uses a trusted third party to
set up a session key. A tells T who the two communication partners are (A and B),
and T generates messages for both parties containing a session key and protected by
encryption using pre-distributed keys (set up prior to the protocol’s execution) that A
and B share with T. Different variants of this protocol are also possible. For example,
T could send the first message to A and the second directly to B. But, as is common
practice, both messages are sent to A, who then forwards the second message to B.
This second message, which is “opaque” from A’s perspective (A cannot decrypt
the message, but can forward it) is sometimes called a “ticket” in protocols such as
Kerberos. In the end, both parties share the session key sesk. Moreover, the messages
that A and B receive each name the intended communication partner with whom sesk
should be used.

This protocol appears to be quite straightforward. It is a mutual authentication
protocol as both parties, A and B, receive assurances about their communication
partner. Moreover, it also sets up a shared session key. We might informally reason
about its correctness as follows. Since the messages sent in Step 2 are encrypted using
the pre-distributed keys, the session key will only be known by A, B, and T (who is
trusted). Of course, an active adversary could change A or B in the message sent at
Step 1 since these names are sent in the clear, however A would notice such mischief.
If A’s name were changed, then T would use the wrong symmetric key in Step 2 and
A would be unable to decrypt this message. Moreover, if B’s name were changed,
then A would see this, as it is contained in the message that A decrypts. Finally, the
message B receives, encrypted by the trusted party T, names A, with whom the key is
shared. Hence, after the protocol’s completion, A and B share a session key and both
of them know who their partner is.

Closer examination reveals that the protocol actually has some problems. Neither
party has any guarantees that the other party actually has the session key after
the protocol has ended. For example, the adversary could hamper availability by
intercepting and dropping the third message, preventing B from receiving the session
key. Or the adversary could block the second message, preventing A from receiving
the key, but sending the second part of it onto B. Moreover, A can be fooled in various

14 2 An Example

ways. For example, the adversary can replay a message from a previous protocol run
between A and B in Step 1. As for B, it can be fooled by any party C that runs the
protocol with T, claiming to be A; C can just forward the second message in Step 2 to
B. B would then end up believing that it shares a key with A, even though A was never
involved.

It is unlikely that anyone would use this protocol as it stands in practice. It is too
simple and its flaws are open to abuse. The protocol we present next addresses the
problems identified above. It introduces mechanisms such as counters and nonces to
prevent messages from being replayed. Moreover, both A and B must demonstrate to
the other agent that they possess the newly generated session key. Finally, to make
the protocol more generally usable, agents may include additional text fields in the
messages they send, which can be leveraged in different application-specific contexts.

2.2 The real deal

2.2.1 The ISO-IEC four pass authentication protocol

We now turn to the actual protocol of interest, the ISO-IEC 9798-1 four pass
authentication protocol. This protocol both improves upon and generalizes the
previous protocol. Namely, it adds both replay protection and key confirmation, where
each party provides evidence that it possesses the session key. The protocol is also
flexible, like a Swiss Army knife with numerous blades. The protocol supports three
different mechanisms to provide replay protection. It also includes eight optional text
fields that can be used to include application-relevant data in the protocol messages
exchanged. We have chosen this protocol as it provides a realistic example of a
protocol that might be (and was) proposed by a standardization committee and used
in practice. Moreover, it is sufficiently complex so that its analysis is non-obvious,
despite being relatively simple for a security protocol.

Figure 2.1 depicts this protocol pictorially as a Message Sequence Chart (MSC)
to improve readability. The translation between this notation and Alice-and-Bob
notation is straightforward and which notation one prefers is a question of taste. As
with Alice-and-Bob notation, keep in mind, when reading it, that this should be
understood as a template describing, at a high-level, what steps should be taken by
the agents executing in the three protocol roles, named T, A, and B. Indeed, we can
think of each role as corresponding to a state machine.

The protocol consists of four steps, also called passes, where messages are exchanged.
These correspond to the arrows in the MSC. Some specialized notation is used
to allow for different implementation options. Namely, TVP denotes a time-variant
parameter, which may be a sequence number, a random number, or a timestamp. TN
denotes either a time stamp or a sequence number. Text refers to a text field, which

2.2 The real deal 15

’T’

Trusted Third Party

A B

TVPA,B,Text1

TokenTA = Text4,
senc(< TVPA, sesk ,B,Text3 >,KAT),
senc(< TNT , sesk ,A,Text2 >,KBT)

TokenTA

TokenAB = Text6,
senc(< TNT , sesk ,A,Text2 >,KBT),
senc(< TNA,B,Text5 >, sesk)

TokenAB

TokenBA = Text8,
senc(< TNB ,A,Text7 >, sesk)

TokenBA

Fig. 2.1: ISO/IEC Four Pass Authentication Protocol

is always optional. The use of text fields is not further specified in the standard. Note
too that all of these may be subscripted.

As with the simplified protocol, T generates a shared session key that A and B each
receive along with the names of their partner. There are four main differences.

1. In the first step, it is assumed that T gets the initiator A’s name from the protocol
context. In contrast, we made this explicit in the simplified version. We also make
it explicit that the protocol executes with a single key server by naming this key
server ’T’ in the rules, rather than leaving it as a variable, which would allow for
arbitrarily many key servers. Note that the quotes around ’T’ make it a constant,
as we will explain in Section 3.1.2. (Note that the standard does not state whether
there can be multiple key servers acting as trusted third parties.)

2. The protocol now includes replay protection. TVPA is intended to prevent a replay
in Step 2 as A can check that the term containing it was recently generated by T.
For example, if TVPA were the nonce sent in Step 1, then A would get its nonce
back. Similarly, B has replay protection, as the first message (the ticket) it receives
from A in Step 3 contains TNT. This is either a timestamp or a sequence number;
hence B can determine whether it was recently generated (in the former case) or
not replayed (in the latter case).

3. The protocol builds in key confirmation whereby each party can confirm that
its partner possesses the session key. This is because the last two messages are
encrypted with the session key, which necessitates possessing this key to compute
the encryption. Hence, when B receives the message in Step 3, it knows that A has

16 2 An Example

the session key sesk and analogously for A when it receives the message in Step 4.
Note that these messages also contain a timestamp or sequence number to prevent
their replay.

4. The protocol includes eight optional text fields. Some of these are cryptographi-
cally protected. This provides confidentiality and optionally integrity protection,
depending on the properties of the encryption function used, in particular whether
authenticated encryption is used.

Even to the well-trained eye, the steps taken and the rationale for them appear sensible.
However, even for a modestly sized protocol such as this one, considerable care
is needed to understand (and even more so to prove) what properties the protocol
actually provides and in what contexts it can be safely used. Part of the complexity,
which is standard for all security protocols, comes from the difficulty in envisioning
all the ways that an adversary can interact with the protocol. Another part comes from
the sheer number of variants that arise from different choices of nonces, timestamps,
and counters for the TVPs and TNs.

Note that these three mechanisms differ, both in how they work and in their underlying
assumptions. For example, nonces require a good random value generator, whereas
counters require initialization and resynchronization; in both cases, further details
on the mechanism and its requirements are not given in the protocol and can be a
source of problems in practice. The mechanisms also differ in the properties they
achieve. For example, timestamps can ensure recentness: the timestamp can be
checked against a clock to determine that the message containing it was recently sent.
In contrast, counters and nonces provide no guarantee of recentness as there are no
requirements on when messages must be sent. Moreover, nonces are unpredictable,
whereas counters and timestamps can be guessed. The standard does not provide a
rationale for choosing among these options. Other variants come from the optional
text fields, whose use is not prescribed and whose properties are not described.

2.2.2 Properties and adversary model

So what properties does this protocol actually have? The ISO/IEC standard does
contain some statements about the intended properties of all protocols in the standard.
Namely, the standard states that the goal of an entity authentication protocol is to
establish whether the claimant of an identity is in fact who it claims to be. So, in this
protocol, the two parties, A and B, should establish each other’s identity. Moreover,
although it is not stated in the standard, one may also expect that any keys, such as
sesk, established during the protocol’s execution are intended to be a secret shared
between A and B. We interpret these three properties as follows.

Key Secrecy: The session key sesk generated and sent by the key server T to the
two parties, is not learned by the adversary.

2.2 The real deal 17

Authentication for A: the initiator A authenticates the responder B in that if A
concludes its role of the protocol, believing that it was running it with B, then B
was running the protocol in the responder role and agreed on the same session key
sesk.

Authentication for B: this is dual to the last property, namely when the responder B
completes its role with some A, then A was running the protocol as the initiator
and again there is agreement on the session key.

The standard also states that the given protocols should be resilient to certain kinds
of attacks, i.e., they should provide replay attack prevention and reflection attack
prevention. We caution against this kind of security specification. There are many
kinds of attacks, including those that are as yet unnamed, or not even conceived.
Rather than specifying an incomplete list of attacks that should not happen, one
should instead specify what constitutes secure behavior, e.g., what it means for one
party to authenticate another party or for a key to be secret, formalizations of which
are coming shortly. Together with an adversary model, this specifies what the protocol
should achieve, no matter what the adversary does, within the specification of the
adversary’s capabilities.

As for the three properties, the ISO/IEC standard, like many others, leaves some details
open to interpretation. So our interpretation of authentication and key secrecy, given
above, may differ from what the standard’s writers actual intent was. This is a common
problem as even basic notions such as authentication are usually underspecified in
standards and other protocol documents. In Section 5.9 we will explain, for example,
that authentication actually has many different interpretations with varying degrees
of strength. In the simplest case, authentication might simply mean that an agent
was alive, i.e., it took part in the protocol. Alternatively, authentication might have
a stronger meaning such as the agent was alive, operating in the intended role, and
agrees with other agents on protocol-relevant data such as nonces and session keys.

Note that the interpretations that we have given above are more precise than the
standard. But nevertheless they are still informal. We will formalize them shortly.
Precision is a prerequisite to formality, and usually much of the work involved in
formal modeling is in making all aspects of the protocol (the description of the roles,
the intended properties, and the assumed adversary) precise.

There are other protocol properties that could be specified, for which the standard is
silent. In particular, the specification makes no statements about the properties of the
text fields, i.e., their confidentiality or authenticity. In general, when using Formal
Methods, a central issue is to work out such details, especially when they are not
given by the protocol’s designer or, in this case, the standard itself.

A similar challenge is to work out the adversary model. The ISO/IEC standard is
completely silent on this point. We will assume for our analysis that the adversary is
an active network attacker. For other protocols, we may consider even more powerful
adversaries; for example, those that can compromise some of the protocol participants,
revealing their keys, or even choosing their keys. Of course, the standard’s missing

18 2 An Example

1 theory ISO_IEC
2 begin
3 builtins: symmetric-encryption
4
5 rule Setup: /* Setup shared keys between $X (variable) */
6 [Fr(~kXT)] /* and 'T' (fixed trusted server) */
7 --[]->
8 [!SharedKey($X,'T',~kXT)]
9

10 rule A1: /* A initiates protocol with T */
11 [Fr(~tvpA), Fr(~text1)]
12 --[]->
13 [Out(<~tvpA,$B,~text1>),StA1($B,~tvpA)]
14
15 rule T: /* T receives message from A and responds to A */
16 let m1 = ~text4
17 m2 = senc(<tvpa,~sesK,B,~text3>,kat)
18 m3 = senc(<~tnT,~sesK,A,~text2>,kbt)
19 tokenTA = <m1,m2,m3>
20 in
21 [In(<tvpa,B,txt1>),
22 !SharedKey(A,T,kat),!SharedKey(B,T,kbt),
23 Fr(~text2),Fr(~text3),Fr(~text4),Fr(~sesK),Fr(~tnT)]
24 --[Sent(A,B,~sesK)]->
25 [Out(tokenTA)]
26
27 rule A2: /* A receives message from T and responds to B */
28 let t2 = senc(<tvpA,sesk,B,text3>,kat)
29 tokenTA = <t1,t2,t3>
30 m1 = ~text6
31 m2 = t3
32 m3 = senc(<~tnA,B,~text5>,sesk)
33 tokenAB = <m1,m2,m3>
34 in
35 [In(tokenTA),!SharedKey(A,T,kat),
36 StA1(B,tvpA),Fr(~text5),Fr(~text6),Fr(~tnA)]
37 --[ALearns(A,B,sesk)]->
38 [Out(tokenAB),StA2(A,B,~tnA,sesk)]

Fig. 2.2: ISO/IEC Protocol (Part 1)

explanation of the intended adversary’s capabilities is problematic: if a developer
uses this protocol as part of a system where there are stronger adversaries than the
one we model, then the properties verified may no longer hold. In general, one should
prove protocols secure under the strongest possible adversaries as then they will be
secure against any weaker adversary and, hopefully, the real-world adversaries are no
stronger.

2.2.3 Protocol formalization

In Figures 2.2 and 2.3, we include the complete specification of the protocol and the
three properties we presented. The full specification is also given in ISO_IEC.spthy, in
the book’s supplementary material. We have numbered the lines consecutively over
the two figures for ease of reference. When specifying protocols in Tamarin, there
are various options in how one formalizes cryptography and other operations, with

2.2 The real deal 19

39 rule B: /* B receives message from A and responds to A */
40 let
41 t2 = senc(<tnt,sesk,A,text2>,kbt)
42 t3 = senc(<tna,B,text5>,sesk)
43 tokenAB = <t1,t2,t3>
44 m1 = ~text8
45 m2 = senc(<~tnB,A,~text7>,sesk)
46 tokenBA = <m1,m2>
47 in
48 [In(tokenAB),!SharedKey(B,'T',kbt),
49 Fr(~text7),Fr(~text8),Fr(~tnB)]
50 --[BLearns(A,B,sesk)]->
51 [Out(tokenBA)]
52
53 rule A3: /* A receives response from B */
54 let
55 t2 = senc(<tnb,A,text7>,sesk)
56 tokenBA = <t1,t2>
57 in
58 [In(tokenBA),StA2(A,B,tna,sesk)]
59 --[Done(A,B,sesk)]->
60 []
61
62 lemma secrecy:
63 "All a b k #i. Sent(a,b,k)@i ==> not (Ex #j. K(k)@j)"
64
65 lemma AauthenticatesB:
66 "All a b k #i. Done(a,b,k)@i ==> Ex #j. BLearns(a,b,k)@j"
67
68 lemma BauthenticatesA:
69 "All a b k #i. BLearns(a,b,k)@i ==> Ex #j. ALearns(a,b,k)@j"
70 end

Fig. 2.3: ISO/IEC Protocol (Part 2)

each option leveraging different language features. Here we select one set of options
and provide just high-level intuition on how we formalize the protocol steps depicted
in Figure 2.1. Other options in formalizing protocols and other Tamarin features
will be described in due time.

In the specification’s first three lines, we name our model ISO_IEC. We also state
that it uses Tamarin’s built-in modeling support for symmetric encryption, where
the encryption of the message m with the key k is written senc(m,k).

Lines 5-60 contain multiset rewriting rules formalizing how the protocol’s global
system state can evolve during execution. Recall that the system states are represented
by multisets, which generalize sets by allowing elements to occur multiple times. For
system states, the multisets’ elements are facts, where a fact is a predicate symbol
applied to zero or more terms. A fact represents part of the (global) system state. For
example, the fact Out(token) models that the message token is output that has
been sent to the network by some agent, whereas the fact In(token) models that
token is available on the network as input to be read by some agent.

The Setup rule models the protocol’s setup assumptions. Namely, symmetric keys
have been set up (out-of-band) between parties X and a (fixed) key server ’T’.
Specifically the left-hand side on Line 6 formalizes what conditions must hold for the

20 2 An Example

rule to fire. Here kXT must be a freshly generated key, recorded in the system state.1
The rule’s right-hand side (Line 8) formalizes the effect of firing the rule. Namely,
the fact SharedKey(A,’T’,kXT) is added to the state, thereby recording that kXT is
a key shared between X and ’T’.

To help understand Tamarin’s rules, we make a brief diversion on how rules are
applied; see Chapter 3 for the full story. First, a rule’s left-hand side is a multiset of
facts that represent the conditions that must hold for the rule to fire. Namely, this
multiset must match some subset of facts in the system state. When the rule fires, each
fact on the left-hand side is removed from the multiset (unless the fact is prefaced by
the ! symbol, indicating that it persists after rule application), and the instances of
the facts on the rule’s right-hand side are added to the system state. This leads to a
transition that updates the system state.

Second, the two sides of the rule are separated by an arrow, which itself is labeled
with a multiset of actions. In this rule, the arrow on Line 7 is labeled with the
empty multiset of actions. Actions are like facts in that they are built from predicates
applied to terms. However, rather than representing parts of the global state, they
instead model actions taken by agents or taken during the protocol’s set up. Actions
thereby play a role analogous to labels in labeled transition systems and, as we see
in section 2.2.4, they are used for property specification.

A final point is that fresh facts are handled specially in Tamarin. Namely, Tamarin
has a built-in rule that can always fire (there are no conditions on its left-hand side)
and generates new, fresh terms, adding them to the global state. This means that there
is an unbounded supply of different values that can be used by protocol participants
when they require them, e.g., for nonces or keys. Hence the Setup rule can always
fire and set up symmetric keys between arbitrarily many agents $X (including the
agents A and B) and the fixed keyserver ’T’.

We now turn to the remaining five rules. These directly describe the actions taken in
the Message Sequence Chart in Figure 2.1. They are named to specify the sequences
of actions taken by each of the three agents in their role. The first of these rules,
A1, formulates the first step that A takes: for a fresh time-value parameter tvpA and
some arbitrary text message text1, a message is sent out to the network containing
the 3-tuple <tvpA,B,text1>, intended for the communication partner B. The rule
also models that the agent taking this step records in its local state that tvpA was
generated for B, with the fact StA1(B,tvpA).

Note in the above rule that we model the text message text1 as being freshly
generated, reflecting that it is an arbitrary message. As the standard does not describe
how this (or any other) text field is used, we simply make it an arbitrary term. As
no tests are performed on it, by either party, we do not even bother to save it in the
agent’s state. This is a modeling decision, providing an interpretation of the standard’s

1 We gloss over annotations on terms and predicates such as ~, $, and !, which indicate that a value
is freshly generated, a constant is publicly known (i.e., known to all parties), and that a fact persists
after rule application. These annotations will be explained in detail later.

2.2 The real deal 21

underspecification on how text fields are to be handled. The text fields could be
modeled in other ways, e.g., as known strings that serve as labels and are checked by
the messages’ recipients. However, this interpretation would change the protocol’s
semantics and would go beyond what is described by the standard and what might be
found in some standards-conform implementations.

The rule T models the step taken by the trusted third party ’T’. Namely, ’T’ receives
as input the 3-tuple of messages sent by A (or the adversary). Afterwards, ’T’ builds
two encrypted messages, the first for A and the second, which is the ticket (see the
explanation in Section 2.2.1), for B. To construct these messages, ’T’ uses the keys
associated with these agents by sharedKey facts. ’T’ finally constructs, and sends,
an output message, which is again a 3-tuple: a text text4 and the two encrypted
messages, matched with m1, m2, and m3, respectively.

In this rule, we use pattern matching, In(<tvpa,B,txt1>), to decompose messages
and let bindings to make local definitions. This simplifies our specification of the
constructed messages. It is important to note that all variables occurring in the
constructed messages are bound on the left-hand side of the rule, when checking the
conditions for the rule to fire. For example, the appropriate keys for the parties A and
B are fixed by the two SharedKey facts in the left-hand side of the rule, when they
are applied to the system state. This rule has an action fact Sent(A,B,sesk) that
records (in the system trace) that, when this rule is fired, a session key sesK was
generated by the key server intended to be used between the protocol initiator A and
the responder B.

The rule A2 describes A’s second step. A receives the 3-tuple of messages from ’T’
(or the adversary). A then decrypts the 2nd message from this 3-tuple, extracting its
contents, which includes the session key sesk. Note that we use pattern matching
in Tamarin to perform this decryption: t2 must match an encrypted term of
form senc(<tvpA,sesK,B,text3>,kat), where the fact SharedKey(A,T,kat)
is required for the rule to fire. This models that A shares the key kat with ’T’, and
A can therefore decrypt this message. Afterwards, A builds the response message,
which includes the ticket and a message encrypted with the session key sesk that
contains tnA (which is a timestamp or nonce) and the name of the intended partner B.
A records in the state that its partner B should learn both tnA and sesk. The rule’s
action records that the initiator A learns a session key sesk intended to be shared
with the responder B.

The rule named B in Figure 2.3 describes B’s one and only step. Namely B receives
the 3-tuple of messages from A (or the adversary), decomposes it into its three parts,
and crafts a response, which is a pair of a text text8 and a message that contains a
new timestamp or nonce tnB. The rule’s action records that the responder B learns a
session key, sesk, that should (already) be shared with the initiator A.

The final rule, A3, formalizes A’s receipt of this last message. A decrypts this with the
session key, thereby completing its role of the protocol. The rule’s action records the
protocol’s completion.

22 2 An Example

2.2.4 Property formalization

The final part of the theory file, given in Lines 62–70 in Figure 2.3, formalizes the
properties that we expect the protocol to satisfy, namely the three properties informally
described in Section 2.2.2. These properties state that each agent authenticates its
intended partner and that the session key is secret. Each property is given as a lemma,
reflecting that Tamarin should be used to prove it.

Recall that properties are given as formulas that are interpreted over the model’s traces.
These traces are incrementally constructed, where each rule’s application extends
the trace with an instance of the actions that label the applied rule. For example,
when the multiset rewriting rule T is applied, the trace is extended with the action
Sent(a,b,k), for some a, b, and k, indicating that the trusted server ’T’ generated
the key k, intended to be shared by the initiator a and the responder b.2 Moreover,
the trace also contains actions recording those terms t that the adversary knows,
which is modeled by the fact K(t). Tamarin has built-in support for reasoning about
the adversaries’ knowledge: the adversary knows some term t either because it was
sent by some agent over the network (i.e., Out(t)), or it can be constructed by the
adversary from other messages that were previously sent. Section 6.8 contains more
details on this point.

With the above at hand, we turn to our first property, key secrecy. It is formalized
as whenever we have Sent(a,b,k) at some position i in a trace, then we do not
have K(k) at some position j. Here the values a, b, and k are arbitrary and they can
therefore match the terms contained in any Sent-action occurring in the trace. Said
less technically, the lemma secrecy states that whenever the key server generates a
key k intended to be shared between the initiator and the responder, the adversary
does not learn this key.

The second and third properties proven are examples of correspondence properties,
which formulate a correspondence between events in the trace. Namely, they state
that when one party has completed its role in the protocol, then the other party was
also executing its role, and the two parties agree on relevant data. The relevant data
here is the partner’s identity and the session key.

In more detail, the second property, AauthenticatesB states that when an initiator
a finishes its role (corresponding to the rule A3, which generates the Done event)
believing that it shares the key k with the communication partner b, then b was
executing its step of the protocol (producing the BLearns event), believing it was
talking with a and sharing the same session key k. Intuitively, this states that the
protocol’s initiator a, upon completing its role, draws the right conclusions about
its communication partner and their shared secret. Analogously BauthenticatesA
states that, for the agent b in the protocol’s responder role, the conclusions that b

2 Here we use lower-case variables, like a, to emphasize that these are agent names, not roles. As
they are universally quantified, they may be instantiated by any agent. Recall the discussion about
roles versus names, and naming conventions in Section 2.1

2.2 The real deal 23

draws about the agent a in the initiator role are correct. That is, if b concludes its
role (generating the event Blearns) believing that it is speaking with a and sharing
the key k, then a is executing its role, believing it is speaking with b and sharing the
same key k.

2.2.5 Analysis

We use Tamarin to analyze all three lemmas, either proving them or finding
counterexamples.

Tamarin proves the secrecy lemma automatically. The proof of this lemma requires
first stating and proving an auxiliary lemma, which can be done automatically using
Tamarin’s autoprove strategy with auto-sources. The use of auxiliary lemmas and
the automated construction of a useful class of lemmas (called sources lemmas) is
explained in Section 8.3.

In contrast to secrecy, the two authentication lemmas AauthenticatesB and
BAuthenticatesA are false and for each of these lemmas Tamarin automati-
cally discovers attacks. In Figure 2.4 we illustrate the attack Tamarin found on
the property AauthenticatesB, depicting it as a Message Sequence Chart. The
translation from Tamarin’s output, which is given as a dependency graph, to a
Message Sequence Chart, will be described in Section 6.5; we have included the
dependency graph for this attack in Chapter 19 but suggest the reader consults it only
after reading Section 6.5.

The attack Tamarin finds on AauthenticatesB is sometimes called an “Alice
talks to Alice attack.” It represents the case where an agent, say a, plays in multiple
protocol roles: here the initiator role and the responder role. (Recall the distinction
between agent names and roles, discussed in Section 2.1.) The attack arises as part
of a’s message from its second step (Rule A2) is directly reflected back to a in its
third step (Rule A3) without any party, including a, having executed in the B-role
(Rule B). Hence there is a Done event without a corresponding BLearns event. This
can be seen in the corresponding dependency graph produced by Tamarin, depicted
in Figure 19.1 in Chapter 19.

Whether an agent can actually play in multiple roles will depend on both the protocol
and how it is used in practice. For many protocols, this flexibility is possible and
desirable. For example, in an authentication protocol, an agent a may authenticate
other agents, i.e., agent a may play in the initiator role and also be authenticated by
other agents, i.e., play in the responder role. Moreover, whereas a human agent is
unlikely to want to authenticate herself, the agents performing authentication are
often software components implementing some services. One can envision use cases
where an agent may use different services with the same identity and these services
wish to authenticate each other, whereby instances of Alice will talk to other instances
of Alice. In any case, security protocols such as those for entity authentication are

24 2 An Example

designed to be general so they can be used in many contexts. If contexts like those
where Alice talks to Alice are not intended to be supported, then this restriction
should be explicitly part of the protocol specification. This was not the case for the
ISO/IEC protocol. If it were, we would then include this restriction in the model
(we will see in Section 5.10.2 how we could prevent such scenarios using trace
restrictions) that we would subject to analysis.

Role T

t

Role A

a (with peer a) Adversary

TVPa, a,Text1

TokenTA = Text4,
senc(< TVPa, sesk , a,Text3 >,Ka,t),
senc(< TNt , sesk , a,Text2 >,K ′

a,t)

TokenTA

TokenAB = Text6,
senc(< TNt , sesk , a,Text2 >,K ′

a,t),
senc(< TNa, a,Text5 >, sesk)

TokenAB

Reflect part of message

Text8, senc(< TNa, a,Text5 >, sesk)

a played role B

Fig. 2.4: Attack on Property AauthenticatesB. The crossed-out hexagon denotes
that an expected property is not met. After a completes the A role with its assumed
partner a, one would expect that there was an instance of a performing the B role,
but this is not the case.

In Figure 2.5 we illustrate the attack on the second authenticity property
BauthenticatesA. This attack is more subtle than the previous one and exemplifies
the kind of attack that designers often overlook. Although it is not an Alice talks to
Alice attack, it does exploit that an agent can be an initiator in one protocol run and a
responder in another. The essence of the attack is the responder is fooled about the
identity of the initiator. Namely, there are two different agents, named d and c, and c
starts the protocol as the initiator with d in the responder role. In the last message in
the MSC, c receives a message that tricks it into believing that it is involved in a
(separate) protocol run, playing in the responder role, where d is the initiator. The
agent c has been fooled, as d never initiated a protocol run with him.

This attack works because the message that agent c received is of the correct form
to be received in the responder role. It is constructed (here, by the adversary) from
two previous messages (one from t’s response and the other from d’s response) and

2.3 Summary 25

contains a ticket encrypted for c together with a message encrypted with the session
key contained in the ticket. Hence, after receiving this message and responding to
it, c concludes that it has just played in the responder role (which is just this one
protocol step) with the agent d. However, the correspondence property fails as d had
not played in the initiator role. Figure 19.2 shows Tamarin’s dependency graph,
witnessing this attack.

Role T

t

Role A

c (with intended peer d)

Role B

d (with peer c) Adversary

Role B

c (with assumed peer d)

TVPc , d ,Text1

TokenTA = Text4,
senc(< TVPc , sesk , d ,Text3 >,Kc,t),
senc(< TNt , sesk , c ,Text2 >,Kd ,t)

TokenTA

TokenAB = Text6,
senc(< TNt , sesk , c ,Text2 >,Kd ,t),
senc(< TNc , d ,Text5 >, sesk)

TokenAB

TokenBA = Text8,
senc(< TNd , c ,Text7 >, sesk)

TokenBA

TokenAB′ = Text6,
senc(< TVPc , sesk , d ,Text3 >,Kc,t),
senc(< TNd , c ,Text7 >, sesk)

TokenAB′

TokenBA′ = Text8,
senc(< TN ′

c , d ,Text
′
7 >, sesk)

TokenBA′

d initiated the session in role A

Fig. 2.5: Attack on Property BauthenticatesA. The crossed-out hexagon denotes, as
before, the violated property, and the dashed line denotes the adversary eavesdropping
on the token.

2.3 Summary

We have used the ISO-IEC four pass authentication protocol to give a first impression
of how Tamarin is used. Although the protocol itself is relatively simple, the possible
behaviors it gives rise to in the presence of a network adversary are exceedingly subtle.
And finding subtle corner cases representing attacks is precisely where Tamarin
excels. Moreover, when the intended property does hold, one gets a proof of that.

26 2 An Example

Our explanations were at a high level. In subsequent chapters, we will delve into the
details. We will also later present more significant examples.

Part II

Modeling Foundations

Chapter 3

Foundations of Protocol Modeling in Tamarin

Tamarin’s language and algorithms for constructing proofs build on research in both
term rewriting and order-sorted equational logic. Our focus in this book is however
practically oriented: using Tamarin to reason about security protocols rather than
explaining this underlying theory. Nevertheless, some knowledge of these foundations
is helpful for specifying protocols and understanding how to interact with Tamarin.
General background on these topics may be found in the book on term rewriting
by [6] and the survey on order-sorted logic and computation by [104].

3.1 Protocol modeling with multi-set rewriting

In the appendix, Chapter 20, we provide the syntax of security protocol theories in
Tamarin. Here we start with a high-level overview, before explaining the individual
parts in this chapter and subsequent ones.

As we saw in the introduction, to model a protocol in Tamarin’s input language, we
specify the state machines for the protocol’s different roles as well as for the adversary.
These specifications (along with some additional transition rules we will meet shortly)
together define a single global transition system. The state of this system models, for
example, the “local” states of the parties executing runs of the protocol’s role state
machines, the adversary’s state, and the state of the communication network. The
system’s transitions correspond, for example, to a party performing a step in a role’s
state machine or to the adversary constructing a message.

In reality, the parties that run a protocol like TLS do not run a single instance of
a state machine for their role: they can run multiple instances of these machines
concurrently, and we refer to each such state machine run as a thread. For example,
when Alice uses a web browser in the Internet, her browser may use the TLS protocol
to connect on her behalf to multiple servers concurrently for multiple services and
tabs. Moreover, even when communicating with a single server, multiple threads of

29

30 3 Modeling Foundations

the “client” role may be running concurrently. Similarly, the server can be running
many threads corresponding to instances of the “server” role concurrently, with any
number of parties. To reflect these real-world situations, we typically model that each
party can be running an arbitrary number of instances of the protocol’s roles. In order
to keep track of the state of each of these threads, we typically assign a unique thread
identifier to each of them.

We specify the system’s transitions using multiset rewriting rules. Consider, for
example, the following rule.

[State(~threadID, $A, 'Waiting'), In(msg)]
--[ReceivedMessage($A, msg)]->

[State(~threadID, $A, 'Done')]

This rule models the situation where there is a protocol thread, identified by
~threadID, for some party $A, that is in a Waiting state. Upon receiving a message
msg from the network, the thread can transition to the Done state, logging the transition
as ReceivedMessage($A, msg).

Tamarin has a set of built-in rules. These rules specify an adversary who controls
the network and they also include a rule for generating fresh values. Tamarin’s users
additionally provide their own rules to specify the protocol under consideration and,
optionally, additional adversary capabilities.

More formally, Tamarin uses three kinds of syntactic categories to specify the
transition system:

• Terms that represent protocol messages, bitstrings, or variables.
• Facts that are used for two purposes.

1. Facts are used to record information in the transition system’s current state and
to perform checks against such information. Examples include State(...)
for active threads and In(...) and Out(...) for input and output to the
adversary-controlled network, modeling asynchronous communication (see
also Section 3.1.8).

2. Facts can log performed actions, such as ReceivedMessage(...), that are
relevant for property specification.

• Rules that model the transition system’s possible transitions.

We discuss each of these categories in turn below.

3.1.1 Symbolic modeling

A central question is how to represent the messages manipulated by and communicated
in protocols. Although, in reality, the messages are bitstrings in a computer’s memory
or transmitted over a network, we work with a term-based representation of these
strings where the terms represent how the bitstrings are constructed by applying
cryptographic functions to data. This is in the tradition of early work on building

3.1 Multi-set rewriting 31

methods and tools for security protocol analysis [54, 92]. Working with terms rather
than bitstrings provides a higher-level of abstraction for the messages that protocols
manipulate, which allows analysis methods to scale. Moreover, it means that we can
directly leverage results from the domains of term-rewriting, equational reasoning,
and unification.

For example, we represent the application of a hash function H to a constant string
not as the concrete bitstring that would result from applying a given hash function to
the string, but rather as a term like H('Hello World'). Similarly, we represent the
symmetric encryption of a message m with some key k as the term senc(m, k).

This use of terms to represent cryptographic messages is often called the symbolic
model of cryptography [2] as it represents the bitstrings that are manipulated in cryp-
tography by terms in a term algebra. Additionally, since terms may contain variables,
we can reason symbolically about classes of messages rather than considering each
concrete instantiation. Note that an alternative to the symbolic model is to use a
cryptographic model, where messages are represented as bitstrings and the adversary
is modeled as a probabilistic polynomial time Turing machine [2, 10]. Such models
are substantially lower-level than their symbolic counterparts, which enables one
to reason about details like message and key length, but at the cost of significantly
increased complexity in both formalization and proofs.

Note that security protocols often work with randomly generated values. These
values play a crucial role in many security protocols and are used to generate keys,
challenges, and nonces (“Numbers Used Once”). In the symbolic model, we do not
reason probabilistically about such values and the adversary’s knowledge of them
but rather possibilistically. Namely, bitstrings are either known to the adversary (or it
is possible for the adversary to efficiently learn them from other messages that the
adversary has seen) or else they are randomly drawn from a large space such that the
adversary cannot efficiently guess or brute-force their value.1

3.1.2 Terms

Tamarin allows users to define their own language of terms that are manipulated by
the protocols they define. The set of function symbols and constants that are used to
construct terms are determined by a signature. Tamarin also employs a very simple
typing discipline using sorts, which are a simple kind of types, to distinguish between
different kinds of data. We describe this below.

Messages are modeled as terms in an order-sorted term algebra [104]. Sorts denote
sets of terms, whereby every term has a sort. Order-sorted refers to an ordering on

1 For cryptographers: negligible events, such as guessing a random value from a large space, are
modeled as being impossible in symbolic models. Moreover, any non-negligible event becomes a
possibility, independent of the concrete probability.

32 3 Modeling Foundations

sorts corresponding to a subsort ordering, where sort 𝐵 is a subsort of sort 𝐴 means
that every term of sort 𝐵 is also of sort 𝐴.

Tamarin’s sorting discipline for terms is very simple: we have a top sort msg and two
incomparable subsorts fr and pub of the top sort. For the two subsorts, we assume
there are two countably infinite sets of values. The first set is the set of fresh values,
which model freshly generated random values, keys, or nonces, which we consider to
be unguessable by the adversary. The second set is the set of public constants, which
model known or guessable constants such as agent identities, which the adversary
can know. Public constants are written as text strings enclosed in single quotes, such
as 'Hello World' or 'label1'. For more details about how public constants are
used in practice see Section 10.1.3.

We also assume the existence of a countably infinite set of Variables for each sort.
Variables have names that are unquoted text strings, like myVar3, and are optionally
preceded by a type declaration. Note that variables do not have a global scope: the
variables in a multiset rewriting rule are local to that rule. Hence when a variable is
instantiated during a rule’s application, as explained shortly, this instantiation has
no effect on variables in other rules that happen to have the same name or on other
instantiations of the same rule.

There are two basic declarations that fix a variable’s sort. Variables without an explicit
type declaration are of the generic top sort msg, and can therefore be instantiated
with any term. Public variables are variables prefixed with a dollar sign ($). These
variables are of sort pub and they can only be instantiated with elements of the set
of public constants, which are known to the adversary. We use this, for example,
for variables that are always instantiated with agent identities, like $C or $S, which
respectively represent arbitrary client or server names. In contrast, fresh variables
are variables prefixed with a tilde (~). These variables are of sort fr, and they can only
be instantiated with elements from the set of fresh values, representing randomly
generated values, nonces, or keys; e.g., ~v, ~clientNonce, or ~sessionKey.

Function symbols model the application of publicly known functions or algorithms.
Functions have a name and an arity, which is the expected number of arguments. Note
that all function symbols work on the top-level sort of msg, i.e., all their arguments
are of top sort, as is their result. Thus, when declaring functions, simply specifying
their arity suffices; in particular an explicit sort for the function’s arguments or result
is not needed. For example, a hash function H of arity 1 can be declared as follows.

functions: H/1

The set of such declarations constitutes the signature that Tamarin uses to determine
which terms are well-formed. Note that functions, so declared, are abstract functions.
They are simply given a name, an arity, and some of their properties may be
subsequently specified via equations and reasoned about using those equations.
However, we do not specify a concrete realization of them, for example, a specific
cryptographic hash like SHA-1 for the above declaration H.

3.1 Multi-set rewriting 33

Some frequently used function symbols such as (nested) pair have abbreviations:
<a,b,c> is a shorthand for pair(a,pair(b,c)). Another example of a function is
symmetric encryption: to encrypt a message <m, ~n> with a key k, we define the
function symbol senc of arity 2 and write senc(<m, ~n>, k).

Note that by default, function symbols are considered to be bijective and one-way: if
the adversary knows f(X), this does not mean it can infer X. We will see in section 3.1.4
how to define function symbols with other properties. Note too that public variables
and fresh variables can only be instantiated with elements from their corresponding
base sets, and therefore do not contain any function symbols.

By default, the adversary can use all functions to construct new terms. It is possible
to introduce so-called private function symbols. Such functions can be used in rules,
but the adversary cannot use them to construct terms. Private function symbols are
declared with their arity, and the [private] annotation. For example

functions: secret/1 [private]

creates a function symbol named secret taking one argument, and which the
adversary cannot use to construct terms.

Terms are built from fresh values, public constants, variables, and function symbols.

Example 1 (Term) Consider the following term:
senc(< $C, ~nC, 'hello' >, ~k)

This term contains the following basic terms:

• $C: a public variable that can be instantiated with any public constant.
• ~nC: a fresh variable that can be instantiated with any fresh value.
• 'hello': a public constant.
• ~k: a fresh variable that can be instantiated with any fresh value.

From these basic terms, a nested pair is constructed by pairing three terms to get
pair($C, pair(~nC, 'hello')), which is equivalent to <$C, ~nC, 'hello'>.
The function symbol senc models symmetric encryption, and has arity two. Its first
argument is the message and its second argument is the key. In the above term, the
nested pair is used as the message and ~k is used as the key.

Messages are terms that are ground, meaning that they do not contain any variables.

3.1.3 Substitutions

Substitutions are functions from variables to terms that are homomorphically
extended to functions on terms. We write 𝑡𝜎 to denote applying the substitution 𝜎 to
the term 𝑡. This application replaces each variable 𝑥 in 𝑡 by the term 𝑥𝜎.

34 3 Modeling Foundations

Example 2 (Term substitution) Consider the variables v and w, the term
t = <v,H(<w,v>)>, and the substitution

𝜎 = {v ↦→ <x,$B>, w ↦→ H(~nA)}.

We then have
w𝜎 = H(~nA)

and
t𝜎 = < <x,$B>, H(<H(~nA), <x,$B> >) >.

3.1.4 Term equality and equational theories

A Tamarin specification typically contains a set of equations that define an equational
theory [6, 91], which specifies when two terms may be considered equal.2 By default,
the equal sign (=) in Tamarin denotes equality with respect to the given equational
theory. Note that this use of equality should not be confused with assignment as found
in imperative programming languages.

Without equational theories, we are simply specifying a free term algebra, which
is where two terms are equal if and only if they are syntactically identical. For
example, without an equational theory, H(x) is never equal to G(y), no matter how
we instantiate the variables x and y. Intuitively, unless the specified equations say
otherwise, function symbols behave like “one-way” or “non-invertible” functions:
F(G(x)) cannot be equal to x since these two terms are syntactically different.
Moreover, function symbols behave as if they were injective: if x is not equal to y,
then G(x) cannot be equal to G(y).

This interpretation is too strict for some functions and for a more accurate model
equational theories are needed. For example, when modeling encryption we would
specify an encryption algorithm with function symbols for the encryption and the
corresponding decryption algorithm. We would then use equations to specify the
relationship between these algorithms: the decryption of an encrypted ciphertext
using the appropriate decryption key yields the original plaintext (see equations
below). This relationship between decryption, encryption, and the encryption key is
not captured by the free term algebra.

Example 3 (Built-in equational theory for symmetric encryption) To model symmetric
encryption, we use two function symbols of arity two, senc and sdec, to respectively

2 Formally, a set of equation E, together with a set of terms T, defines an equational theory as the
set of equations that can be derived from rules formalizing that equality is a congruence relation
(reflexive, symmetric, transitive, and a congruence) as well as closing up under all substitution
instances of equations, replacing variables by terms in T [78]. When no confusion can arise, we
will use the term equational theory both to refer the set of equations E and the equational theory it
defines.

3.1 Multi-set rewriting 35

model encryption and decryption. We then use the following equation to express that
decrypting an encryption with the same key yields the original plaintext:

sdec(senc(m, k), k) = m.

The next example presents Tamarin’s built-in modeling of Diffie-Hellman style
exponentiation.

Example 4 (Built-in equational theory for Diffie-Hellman) To model Diffie-Hellman
exponentiation in a prime order group, we use five reserved symbols: ˆ for modular
exponentiation, * for the multiplication of exponents, 1 for the identity with respect
to multiplication, DH_neutral for the identity as base with respect to exponentiation,
and inv for the inverse. The equational theory for these symbols is defined as follows.

(xˆy)ˆz = xˆ(yˆz)
DH_neutralˆx = DH_neutral

x*(y*z) = (x*y)*z
xˆ1 = x
x*1 = x
x*y = y*x

x*inv(x) = 1

For more details on Tamarin’s built-in equational theories, see Chapter 7. For
specifying your own equational theories, please see Chapter 14.

3.1.5 Facts

The terms from the previous section are used to model messages. We turn next to the
syntactic we use to model system transitions.

We define the state of the global transition system as a multiset of facts. A multiset
(sometimes also called a “bag”) is simply a set whose members may occur multiple
times. Each fact in the multiset is built from a fact symbol applied to zero or more
terms. Except for a few built-in fact symbols, explained next, facts are user-defined
and their meaning is given by their use in the protocol specification.

Informally, we can consider facts as playing a role analogous to sticky notes posted
on a refrigerator. Namely, they keep track of the current state of our transition system,
where the note’s title is the fact name, and the note’s content is a sequence of terms.

For example, consider modeling an initiator process that consists of several steps, like
sending a message, receiving a message, and sending a follow-up message. We could
use a fact Initiator(ThreadID, 'state_2', AgentID, m) to represent that
there exists a thread with identifier ThreadID of an agent AgentID that performs
the initiator role (encoded as the fact name), and whose thread is at state_2

36 3 Modeling Foundations

after receiving a message m. As a second example, we may want to define a fact
KeyPair(AgentID,privateKey,publicKey) to represent that an asymmetric key
pair has been generated for the agent AgentID.

Tamarin has several built-in fact symbols:

• K/1: K(t) is used to check whether the adversary can derive the term t,
• In/1: In(t) represents that t was received from the (adversary controlled)

network,
• Out/1: Out(t) represents that t was sent to the network, and
• Fr/1: Fr(t) represents that t was freshly generated.

Additionally there are the reserved facts KU/1 and KD/1 that are used internally by
Tamarin (both are refinements of K, and are used in Tamarin’s search algorithm).
We will return to them in Section 6.8.

3.1.6 Linear and persistent facts

As we will see in the next section, system transitions consume facts from the state
and produce (other) facts.

We differentiate between two types of facts.

• Linear facts are those facts whose names do not start with an exclamation
mark (!). These facts can be removed from the state by transitions, e.g.,
Initiator(ThreadID,...).

• Persistent facts are those facts whose names start with an exclamation mark (!),
e.g., !LongTermKey($A,...). These facts are never removed from the state, but
are only “read” in the sense that they can occur on the left-hand side of a multiset
rewriting rules and are not consumed when the rule fires.

In practice, we will mostly use linear facts. We will use persistent facts for the
long-term storage of data, such as long-term keys in a public key infrastructure.

3.1.7 Rules

A transition system in Tamarin is specified by a set of multiset rewriting rules,
provided in a Tamarin input file. These rules have the form

[L]--[A]->[R],

where L stands for “left-hand side”, R stands for “right-hand side”, and A stands for
“observable logged actions”. Here, L, A, and R are each multisets of facts. Note that
we omit the surrounding multiset brackets because the rule notation already includes

3.1 Multi-set rewriting 37

square brackets. Note that multiset rewrite rules have a single premise and conclusion,
each of which are a multiset of facts. For simplicity, however, we will often call the
premise facts simply premises and the same for the conclusion facts.

We will ignore the actions A for now: the main purpose for these facts is to serve
as the “glue” between the transition system and the property specification language.
We will return to them in Chapter 5 when we introduce the property specification
language.

Note that when A is the empty multiset, we omit the middle square brackets and
simply write

[L]-->[R] .

Intuitively, rules specify transitions as follows: if there exists an instantiation of the
facts in L in the current state of the system, we can make a transition, and replace the
L facts in the state by the R facts with the same instantiation. Consider the following
small example of this.

Example 5 (Rewrite rules) Consider the following rules.

• []-->[C('1')]
• [C(x)]-->[D(x)]
• [C(x)]-->[C(f(x))]

If the transition system’s initial state is the empty multiset, only the first rule applies
in that state. Its application leads to a transition to the state [C('1')]. Afterwards,
we can make a transition using the second rule, and end up in the state [D('1')].
Alternatively, we can make an arbitrary number of transitions using the third rule, to
end up with [C(f(f(...f('1'))))], after which we can still make a single
transition using the second rule. The first rule can also be used repeatedly, each time
enabling the use of the other two rules on the new copy of C('1') in the state, as
explained before.

Next, consider an example using persistent facts.

Example 6 (Rewrite rules and persistent facts) Consider the following rules.

• []-->[!E('hello')]
• [!E(x)]-->[F(f(x))]

Recall that !E(...) is a persistent fact, meaning that it is never consumed by a rule’s
application. Starting in the initial state, we cannot yet apply the second rule. However,
once we have applied the first rule, the second rule can be applied arbitrarily many
times because !E(...) is never removed from the state.

For each rule, we require that all variables that occur in the actions A or in the
right-hand side R also occur in the left-hand side L. The only exception is for public
variables, namely those prefixed with a dollar sign $, which may occur in A or R only.
This requirement ensures that the transition system is well-defined. In particular, as

38 3 Modeling Foundations

we will see shortly, this requirement ensures that all executions and traces of the
transition system can be trivially ground.

Besides the user-specified rules in a Tamarin input file, Tamarin also has a set of
built-in rules that, for example, encode a network adversary, or specific cryptographic
schemes.

Fresh rule

Tamarin always includes one special rule that produces fresh values. In protocol
specifications, this allows us to refer to unique, unpredictable values in rules by
putting a Fr fact on the left-hand side. In practice, we use this to model the generation
of random values from a sufficiently large space, private keys, etc. The corresponding
built-in rule is

Fresh: []--[]->[Fr(~x)] ,

where 𝑥 must be of type fresh. By itself, this rule might appear ill-defined as the
variable ~x does not occur on the rule’s left-hand side. However, this special rule gets
its meaning through a restriction on the semantics, as we will see in the next section.

3.1.8 Default network model and message deduction rules

Tamarin’s default built-in network model uses Out(x) and In(x) facts to represent,
respectively, messages sent and received over a network that is fully controlled by
the adversary. Hence sending a message directly adds the message to the adversary’s
knowledge; this is represented by the collection of persistent !K facts in the state.
Similarly, receiving messages from the network is possible only when the adversary
knows that message. This is modeled by the following two rules.

[Out(x)]-->[!K(x)]
[!K(x)]--[K(x)]->[In(x)]

Additionally, the adversary can produce fresh values, it initially knows the set of
public messages, and it can apply any function to the messages it already knows. This
is captured by the following three rules.

[Fr(~x)]-->[!K(~x)]
[]-->[!K($x)]
[!K(x1)...!K(xn)]-->[!K(f(x1,....,xn))], for all function symbols f

Intuitively speaking, these rules allow the adversary to manipulate messages as desired.
For example, the adversary can generate new messages and keys, decrypt messages

3.2 Semantics of rules 39

that it received for which it knows the decryption key, perform Diffie-Hellman
exponentiation, hash, and sign messages.

3.2 The semantics of Tamarin’s rules

Now that we have the core syntactic ingredients in place to specify systems in
Tamarin, we explain how they define a transition system with an associated set of
traces.

We define a single “global” transition system that models a distributed algorithm in
the presence of an active network adversary, where the algorithm and adversary are
specified using rules. The state of the transition system is a multiset of facts, and the
initial state of our system is the empty multiset, i.e.,

𝑆0 = [] .

3.2.1 Transitions

We extend the notion of substitution to facts and (multi)sets of facts in the expected
way, i.e., a substitution is applied recursively to its components.

Let 𝑅 be a set of rules constructed over a given signature and let 𝑆 be a state of the
system, i.e., a multiset of facts. The rules typically consist of the user-specified rules
in a Tamarin input file, Tamarin’s default built-in rules (including the Fresh rule),
and user-requested built-in optional rules.

We write set(𝑀) to denote the set of elements in the multiset 𝑀. For example,
set([𝑥, 𝑦, 𝑦]) = {𝑥, 𝑦}. We use the ♯ superscript to denote multiset variants of standard
set operations. For example, we write 𝑆 ⊂♯ 𝑇 to denote that 𝑆 is a sub-multiset of 𝑇 .

Let 𝐺♯ denote the multiset of all ground facts, which are all facts built from the
signature that do not contain variables. For example, Init(’hello’,’Alice’) is
in 𝐺♯, but Resp(H(~x),’test’) is not in 𝐺♯ because ~x is a variable.

Let gri be the function that, given a set of rules, yields the set of all ground instances
of those rules.

Example 7 (Ground rule instances) Consider the rule

ExampleRule : [Fr(~n)]-->[S($A, H(~n))] ,

where S is a fact symbol of arity 2 and H is a function symbol of arity 1. Then
gri(ExampleRule) is

40 3 Modeling Foundations{
[Fr(x)]-->[S(y, H(x))]

�� x is a fresh value and y is a public constant
}
.

We specify a labeled operational semantics for 𝑅 (including the Fresh rule) using a
labeled transition relation steps of the following type:

steps(𝑅) ⊆ 𝐺♯ ×
(
gri(𝑅 ∪ {Fresh})

)
× 𝐺♯.

For a multiset of facts 𝑙, we denote by lfacts(𝑙) the multiset of linear facts in 𝑙, and
we denote by pfacts(𝑙) the multiset of persistent facts in 𝑙.

We define steps below using inference rule notation. This states that for each instance
for which the premises (above the line) hold, the conclusion (below the line) can be
drawn:

[l]--[a]->[r] ∈ gri(𝑅 ∪ {Fresh}) 𝑆′ =
(
𝑆 \♯ lfacts(l)

)
∪♯ r

lfacts(l) ⊆♯ 𝑆 set
(
pfacts(l)

)
⊆ set(𝑆)(

𝑆, [l]--[a]->[r] , 𝑆′
)
∈ steps(𝑅)

Informally, this rule states that we can make a step from 𝑆 to 𝑆′ using a ground rule
instance l--[a]->r, if

1. l--[a]->r is a ground instance of a rule in 𝑅 or the Fresh rule,

2. 𝑆′ is the result of removing the linear facts in 𝑙 from 𝑆, and adding the facts in 𝑟,

3. the multiset of linear facts in 𝑙 occurs in 𝑆, and

4. the set of persistent facts in 𝑙 occurs in 𝑆.

The first clause effectively adds the Fresh rule and ensures that only ground rule
instances can be used for a step. The second clause defines the new state 𝑆′ after
taking the step from 𝑆. The third and fourth clauses state the requirements for taking
the step: sufficiently many linear facts must be present to be consumed, and for
persistent facts, which are not consumed, we simply require at least one instance of
each to be present in 𝑆.

3.2.2 Executions and traces

An execution of 𝑅 with respect to an equational theory 𝐸 is an alternating sequence
of states and ground rule instances

[𝑆0, l1--[a1]->r1, 𝑆1, l2--[a2]->r2, 𝑆2, . . . , 𝑆𝑘−1, lk--[ak]->rk, 𝑆𝑘]

such that the following three conditions hold:

(E1) 𝑆0 = [],
(E2) For all 𝑖 ∈ {1, . . . , 𝑘}, we have

(
𝑆𝑖−1, (li--[ai]->ri), 𝑆𝑖

)
∈ steps(𝑅), and

3.2 Semantics of rules 41

(E3) for all 𝑖, 𝑗 ∈ {1, . . . , 𝑘}:
li--[ai]->ri = []--[]->[Fr(n)] and
lj--[aj]->rj = []--[]->[Fr(n)] ,

then 𝑖 = 𝑗 .

Condition (E1) ensures that we start from the initial state with an empty multiset.
Condition (E2) ensures that the transition is valid according to the rules. Finally,
Condition (E3) is a semantic restriction that ensures the main property of fresh values,
namely that they are unique. Note that equality here is modulo the equational theory
𝐸 , as usual.

We denote the set of executions of a set of rules 𝑅 by execs(𝑅). Note that when
we specify properties of transition systems, we specify them not over the system’s
executions, but rather over the sequences of multisets of action facts that arise in the
executions. These sequences constitute the system’s traces. By specifying properties
over the action facts, we give the modeler the freedom to formalize what aspects of
system execution (given by the actions associated with transition rules) are relevant
for specifying the properties of interest.

More formally, for each execution

[𝑆0, l1--[a1]->r1, 𝑆1, l2--[a2]->r2, 𝑆2, . . . , 𝑆𝑘−1, lk--[ak]->rk, 𝑆𝑘] ,

we define the corresponding trace as the sequence

[set(a1), set(a2), . . . , set(ak)]

and denote the set of all traces of a set of rules 𝑅 by traces(𝑅). We write 𝑖𝑑𝑥(𝑡𝑟) for
the set of all indices of the trace 𝑡𝑟, and 𝑡𝑟𝑖 for the 𝑖-th entry of the trace 𝑡𝑟.

Example 8 (Executions) Consider the following three rules 𝑅:

[Fr(~x)]--[]->[S(~x,$A), !T(~x)]
[S(x, $A)]--[]->[]
[!T(x)]--[]->[S(H(x), ’chain’)]

The following sequence 𝐸𝑋1 is a possible execution of 𝑅:
[

[], []--[]->[Fr(n1)],
[Fr(n1)], [Fr(n1)]--[]->[S(n1,'Alex'),!T(n1)],
[S(n1,'Alex'),!T(n1)], [!T(n1)]--[]->[S(H(n1),'chain')],
[S(n1,'Alex'),!T(n1),S(H(n1),'chain')]

]

where n1 is a fresh value.

A possible alternative execution, 𝐸𝑋2, is the following:
[

[], []--[]->[Fr(n4)],
[Fr(n4)], []--[]->[Fr(n5)],

42 3 Modeling Foundations

[Fr(n4),Fr(n5)], [Fr(n5)]--[]->[S(n5,'Blake'),!T(n5)],
[Fr(n4),S(n5,'Blake'),!T(n5)]

]

where n4 and n5 are fresh values.

Example 9 (Actions and traces) Consider the following rules 𝑅:
[Fr(~x),Fr(~y)]--[Gen(~x),Gen(~y)]->[S(~x,~y)]
[S(k,l)]--[Flag(k)]->[S(l,'')]

The set of executions of these rules includes the following:
[Fr(n9),Fr(n7)]--[Gen(n9),Gen(n7)]->[S(n9,n7)],
[S(n9,n7)]--[Flag(n9)]->[S(n7,'')],
[S(n7,'')]--[Flag(n7)]->[S('','')],
[S('','')]--[Flag('')]->[S('','')]

where n9 and n7 are fresh values. The trace 𝑡 corresponding to this execution is:
[{ Gen(n9),Gen(n7) },

{ Flag(n9) },
{ Flag(n7) },
{ Flag('') }]

We have 𝑖𝑑𝑥(𝑡𝑟) = {1, 2, 3, 4} and, for example, 𝑡𝑟1 = Gen(n9),Gen(n7) and
𝑡𝑟2 = Flag(n9). We will show in Section 5.10.2 how we can use restrictions on
traces to provide even more fine-grained control over the set of traces modeled by a
set of rules.

Chapter 4

Modeling State Machines

Now that we have seen Tamarin’s modeling language and its semantics, we turn to
its practical usage, which is to model protocols. We have already given an example of
formalizing a security protocol in Chapter 2. In this chapter, we describe protocol
modeling more systematically, focusing on modeling the state machines associated
with a protocol’s roles.

Multiset rewriting is a general modeling formalism and offers many ways to model
a security protocol and the adversary. This flexibility is analogous to programming
languages where one may implement a function in many different ways. For Tamarin,
there is no one modeling paradigm that must be followed. However, there are standard
approaches that generally work well.

As we have previously observed, a protocol can be decomposed into different roles,
each with an associated state machine. Examples of such roles include the client,
server, initiator, responder, or a trusted third party such as a key server. We model
each of the relevant state machines separately within the global transition system that
we defined in Chapter 3. Namely, for each transition in a state machine, corresponding
to a step of an agent playing in the associated role, we specify a multiset rewriting rule
that can create or change the local state of the role’s state machine. For example, for a
protocol with an initiator and a responder role, we might have a multiset rewriting
rule for our global transition system that models an initiator constructing and sending
the protocol’s first message over the network. We would also have a rule for the
responder role stating that the agent playing in this role receives that first message
and sends a response.

To help visualize how this works in practice, in Figure 4.1 we show a simplified
version of the client state machine for TLS 1.3, where each transition corresponds to a
multiset rewriting rule in Tamarin. In this state machine, the client starts in the state
𝑐0, and chooses one of three main modes to communicate with a server. Afterwards,
the client sends a corresponding “ClientHello” message, and waits to receive the
server’s “ServerHello” response in the corresponding mode. After processing the
response, it sends “ClientFinished” and transitions to the state 𝑐2a. Next the client

43

44 4 Modeling State Machines

c1-kc

c1-pskc0

c1-dhe

c2a c2 c3

C1-dhe

C1-psk

C1-kc

C1-kc-auth

C1-retry

C2-psk

C2

C2-kc

Send ClientHello Receive Serverhello/Finished
and send ClientFinished

Optional client
authentication

start

C2-auth

C2-noauth C3-nst

C3

Crecv

Csend

Cauth

C2-psk-dhe

Fig. 4.1: Simplified state machine for TLS 1.3 clients.

optionally authenticates itself and carries out key confirmation after which the client
is ready to send and receive messages. In Tamarin, we model each transition in such
a state machine by a rule. See [101] for full details on this. Moreover, for the complete
TLS model we would also include the rules for the server and the associated set up
rules.

In reality, not only does each protocol role correspond to a state machine, but agents
can run any number of instances of such state machines concurrently, with each state
machine maintaining its own local state. As a result, in the overall, global transition
system, there can be infinitely many global states. Hence, when Tamarin proves
theorems, it is proving them about an infinite state system. In fact, one may have
infinitely many states even without concurrency since a single role automaton may
have a loop where an agent generates fresh messages and sends them to the network.

As remarked in Section 3.1, we refer to each such state machine run as a thread. After
a thread computes and sends the first message of its associated role, the thread will
remain dormant until a follow-up message with the expected format is received. In
Tamarin, we typically model a thread’s state using facts that we informally call “state
facts”; these often take as an argument an explicit thread identifier.

Note that a model must be self-contained in that it specifies everything needed to set
up the protocol and for its subsequent execution. For the setup, any data that should
be shared must be explicitly modeled using “set up” or “initialization” steps, which
themselves can be modeled by a state machine. For example, Tamarin has no built-in
notion of a public key infrastructure or any other kind of key distribution. Hence, if a
protocol makes use of pre-distributed keys, then their distribution must be explicitly
modeled. We will illustrate these points below.

4.1 A simple challenge-response protocol 45

4.1 A simple challenge-response protocol

Let us start with a small example: a simple challenge-response protocol that is run
between a client (C) role and a server (S) role. When a client runs the protocol, it
generates a fresh symmetric key k and encrypts this together with a tag1 ’1’ using
the server’s public key pk(S). It then sends the ciphertext to the server. When the
server receives this message, it decrypts the ciphertext using its private key to obtain
k, and responds with the key’s hash h(k).

We can write this protocol in Alice-and-Bob notation as follows.
C -> S: aenc{'1',k}pk(S)
S -> C: h(k)

To model this protocol, we will specify a role state machine for each of the two
protocol roles. In addition, we will specify a third state machine that predistributes
keys as part of the key infrastructure. We explain these in turn, starting with the key
infrastructure.

4.1.1 Key infrastructure

Security protocols typically have setup assumptions. For the above protocol, one
assumes that, prior to its execution, servers have generated public/private key pairs
and that clients know the public keys of the servers they wish to communicate with.

For asymmetric encryption schemes, we would model this setup assumption in the
following way. We assume that private keys are freshly generated (unguessable)
values and that there is an abstract function pk that, given a private key, can compute
the corresponding public key. We register the generated key pairs as part of the state
of the global transition system using persistent facts !Pk(.) and !Ltk(.), which
stand for public key and long-term key, respectively. We model these facts as being
persistent because each time that parties execute the protocol they should use these
registered keys, and the keys will not be removed or updated. (In reality, keys may
expire or be revoked, but for this basic example we assume that this does not happen.)
Combined with the fact that all Tamarin theories start with a theory name and a
begin command, this results in the following:
1 theory SimpleChallengeResponse
2 begin
3

4 functions: pk/1
5

6 rule Register_pk:
7 [Fr(~ltk)]

1 The server checks that the tag is present in the decrypted text to prevent the adversary from
inserting random messages as ciphertexts. Note that it is good design practice to differentiate protocol
messages by including explicit tags.

46 4 Modeling State Machines

8 -->
9 [!Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk))]

In the above, Lines 1 and 2 are required for all models and name the theory. Line 4
states that there is a function pk of arity 1. Lines 6–9 define the rule Register_pk:
each time this rule is instantiated with any public constant for $A, a new private key
of type fresh ~ltk is randomly generated for this party. Further rules, lemmas, etc.
may be given, which we omit here and the theory must end with an end command,
also omitted.

As we can see in the right-hand side of the rule on Line 9, the rule’s application
produces three facts:

• !Ltk($A, ~ltk) stores the private key ~ltk so that its owner (here a server $A)
can use it in multiple threads.

• !Pk ($A, pk(~ltk)) stores the public key pk(~ltk) so that clients know
which key to use to encrypt messages for the server $A.

• Out(pk(~ltk)) captures that public keys are actually public by sending them out
to the network. Hence the adversary learns all public keys. Note that the adversary
can invoke rules as long as the premises are met, but it does not learn any of the
involved terms unless they are sent on the network.

We have now modeled the generation of key pairs. However, we have not yet defined
how they are used for encryption and decryption. We therefore introduce two function
symbols, aenc and adec, both of arity two. The first is the encryption function aenc,
which takes a message and a public key as arguments, and represents the resulting
ciphertext. The second is the decryption function adec, whose arguments are a
ciphertext and a key, and represents the decrypted plaintext.
11 functions: aenc/2, adec/2
12 equations: adec(aenc(m, pk(k)), k) = m

We also provide the above equation formalizing that the adec function allows agents,
including the adversary, to decrypt messages when they know the appropriate private
key. Note that this equation only specifies what decryption returns when the right
private key is used. Otherwise the equation is not applicable and the plaintext cannot
be computed.

As we will see later, we can choose to model decryption by honest participants in
two ways: either by having them explicitly apply adec to incoming messages, or by
pattern matching against the encryptions. In this example we will use the latter, as we
also did in Chapter 2. However, for more complex protocols that explicitly handle
decryption failures, one might want to use the decryption function in the rules for
honest agents. We discuss the tradeoffs involved in Section 10.1.6.

4.1 A simple challenge-response protocol 47

4.1.2 Servers

We next model the state machine for the server’s role. The server uses a hash function,
which is non-invertible, which we model by defining a function symbol h without an
associated equational theory.
13 functions: h/1

When a server receives a message, it decrypts the message with its private key. Here
we model this using pattern matching: the server’s rule can only be instantiated for
incoming messages that match the given pattern. This corresponds to all messages
that it could decrypt using its private key.

We give the rule below. We have written the rule on several lines, although
we could have alternatively written it on a single line. It contains the
rule keyword, the rule’s name (Server), and the rule’s body, of the form
[l]–[a]->[r]. Note that comments are prefixed by // or wrapped, e.g.,
/* possibly multi-line comment */.
15 rule Server:
16 [!Ltk($S, ~ltkS) // look up the private-key
17 , In(aenc{'1', k}pk(~ltkS)) // receive a request
18]
19 --[AnswerRequest($S, k)
20]->
21 [Out(h(k))] // return the hash of the key

For each instance of this rule, $S will be instantiated with a concrete public constant.
On Line 16, the rule’s premise retrieves a registered private key for $S. Because !Ltk
is a persistent fact, it is not removed from the state of the global transition system
after the rule is applied; hence it can still be used by later instances of the rule.

Line 17 uses the predefined In fact to model receiving a message from the network
that matches the given pattern, i.e., for any value of k. We will see the purpose for the
action on Line 19 in the next sections. Line 21 is the rule’s conclusion and sends the
response message h(k) on the network using the predefined Out fact.

4.1.3 Clients

We next model the state machine for the client’s role. In contrast to the server role, the
client carries out two steps: sending the initial challenge message, and then waiting
until the response is returned to check that it is indeed as expected. We model each of
these steps with a separate rule.
23 rule Client_Step_1:
24 [Fr(~k) // choose fresh key
25 , !Pk($S, pkS) // lookup public-key of server
26]
27 -->

48 4 Modeling State Machines

28 [Client_State_1($S, ~k) // store server and key for thread
29 , Out(aenc{'1', ~k}pkS) // send encrypted key to server
30]

In the above rule, the client first implicitly uses the Fr rule in the premise to obtain a
freshly generated value for the key k. The variable $S has the public type (denoted by
the $), and thus it can be instantiated with any public constant, denoting the name of
the specific server that the client wants to communicate with. Using the !Pk fact, a
public key of that server is retrieved.

The rule’s conclusion consists of two facts. The first fact Client_State_1 stores
the internal state of this specific thread of the client while it awaits the server’s
response. This thread’s internal state stores the specific server that is the intended
communication partner and the freshly generated key ~k.

Note that because ~k is freshly generated, each time this rule is instantiated, it
will produce a unique instance of the Client_State_1 fact, modeling a uniquely
identifiable thread. If the protocol’s first client step were not to produce a fresh value,
we would typically introduce an explicit internal thread identifier, modeled as a fresh
value, and put it in the state fact to distinguish between threads.

The second fact in the rule’s conclusion is the Out fact, which represents sending the
encrypted key on the network.

The second rule of the client role, shown below, models receiving the response
message in a thread that previously performed the first step.
32 rule Client_Step_2:
33 [Client_State_1(S, k) // retrieve thread state
34 , In(h(k)) // receive hashed session key from network
35]
36 --[SessKeyC(S, k)]-> // state that the session key 'k'
37 [] // was setup with server 'S'

In the premise, we can see that this rule can only be instantiated when there are
Client_State_1 facts in the global state. Then, the concrete instance is removed
from the multiset after the rule is instantiated. This is because it is not a persistent
fact and does not occur in the conclusion.

Using pattern matching, we write In(h(k)) to denote that the rule can addi-
tionally only be triggered if there is an incoming message that matches the hash
of the key we generated in the first step. Note that the full input file is available
at SimpleChallengeResponse-P2.spthy.

4.2 Further concepts 49

4.2 Further concepts

4.2.1 Threads and sessions

In the security protocol literature, the notion of a session is interpreted at least
two ways. In the first interpretation, a session refers to a local session (thread), i.e.,
an execution of a single role of the protocol by a particular agent. In the second
interpretation, a session refers to a synchronized execution of an instance of a protocol
involving multiple agents that each perform one of the protocol’s roles. For example,
this could be a shared session where a server and a client communicate together and
compute a shared session key. In this book, we will mainly use “thread” and “session”
to denote local sessions performed by a single agent, as in the first interpretation.

We model threads by instances of rules, which under Tamarin’s semantics can be
instantiated any number of times within an execution. Concretely, this means that the
possible executions of the previously given model of the simple challenge-response
protocol include executions with arbitrarily many threads. Moreover, for this protocol,
the traces of the global transition system also include traces that have an arbitrary
number of agents, each of them executing an arbitrary number of instances of the
client or server role.

Thus, by default, protocols in Tamarin model an unbounded number of threads and
sessions. As a consequence, Tamarin’s analysis is not restricted to only consider
a small finite number of sessions. The analysis also considers scenarios where the
adversary combines information from an arbitrary number of sessions to try and
violate some of the protocol’s goals.

We will see later how this can be restricted, for example by using trace restrictions
(Section 5.10.2).

4.2.2 Loops

The state machines corresponding to a protocol’s roles may contain loops. For example,
loops arise when parties wish to continuously transmit messages, or compute a new
session key at regular intervals. In a role state machine, this is manifested as a
transition that ends in a state that was previously visited. Because we model the role’s
state machines using rewrite rules in Tamarin’s models, such a transition is modeled
by setting the state machine’s local state to a prior one. Concretely, loops can be
directly modeled in Tamarin by producing facts on the right-hand side of rules that
enable the firing of the same or earlier rules.

For example, the following two rules model the looping state machine from Figure 4.2.
In particular, the second rule outputs an A(x) fact that matches with the fact on the
left-hand side, enabling looping.

50 4 Modeling State Machines

S0 S1 S2
Fr Start

Loop

Fig. 4.2: A role state machine with a loop. Circles denote states and edges denotes
transitions annotated by the rule name.

rule Start: [Fr(x)] --[Start(x)]-> [A(x)]

rule Loop: [A(x)] --[Loop(x)]-> [A(x)]

Note that we could change the right-hand side of the second rule to A(h(x)) to
model that the function h can be applied any number of times. For this modified rule,
there are traces with actions that contain h(h(h(h(·)))), etc. The full input file is
available at Minimal_Loop_induction.spthy.

In practice, loops are easy to model, but can be challenging for Tamarin’s automatic
reasoning during its backwards search. This is explained in Section 6.2 and we will
present some ways for dealing with this challenge in Section 9.1.

4.2.3 Basic branching

With the components discussed so far, we can model non-deterministic choice and
branching based on pattern matching, by modeling a rule for each possible choice
and branch, respectively.

S0 S1 S2
Fr Start

Opt1

S3

S4

S5

Opt2

Opt3

Fig. 4.3: A role state machine with branching.

rule Start: [Fr(x)] --[Start(x)]-> [A(x)]

rule Opt1: [A(x)] --[Option1(x)]-> [B(x)]
rule Opt2: [A(x)] --[Option2(x)]-> [C(x)]
rule Opt3: [A(x)] --[Option3(x)]-> [D(x)]

By modifying the left-hand sides of the rules, we can also introduce further branching
conditions such as requirements on received messages. For example, by including

4.2 Further concepts 51

In(h(x)) in the left-hand side of rule Opt3, the branch can only be taken if h(x) can
be received from the network. As another example, one could add a second argument
$T to the A fact, which could be used to pattern match on particular constants as in
the following example.
rule Start: [Fr(x), In($T)] --[Start(x)]-> [A(x,$T)]

rule Opt1: [A(x,'1')] --[Option1(x)]-> [B(x)]
rule Opt2: [A(x,'2')] --[Option2(x)]-> [C(x)]
rule Opt3: [A(x,'3'), In(h(x))] --[Option3(x)]-> [D(x)]

We will return to more expressive forms of branching, which can involve predicates
and “else”-like negated clauses, in Section 5.10.4. Both examples are available in
input files Minimal_branch.spthy and Minimal_branch_alt.spthy

Chapter 5

Specifying Trace Properties in Tamarin

Now that we have seen how a protocol model is specified using multiset rewriting, we
turn to the question of how to specify protocols’ intended security properties. Among
the usual properties that we are interested in are (key) secrecy and different kinds
of agreement properties. These are expressible as so-called trace properties, which
we examine in this chapter. We will address other kinds of properties, in particular
privacy-style properties, which are usually represented as equivalence properties, in
Chapter 13.

We have seen that a multiset rewriting system gives rise to a set of traces representing
the executions of the system modeled, also interacting with the adversary. Each trace
is a finite sequence of the labels on the transition arrows of the rules used. These
labels are called synonymously observable logged actions, action facts, or simply
just actions. A trace property then specifies a set of traces and it represents a set
of desired protocol behaviors in terms of its sequences of observable actions. If
the protocol state machine, describing how the protocol actually executes in the
adversary’s presence, has behaviors that are not included in the specified property,
then we have a violation. This constitutes an attack on the protocol.

In Tamarin, trace properties are specified as formulas in first-order logic, built
from actions and quantifying over message terms and timepoints. The timepoints
are associated with occurrences of actions and are simply used to order events, as
opposed to specifying real-time requirements on precisely when events occur. They
therefore enable the specification of properties that depend on the events’ relative
ordering.

To explain this further, consider the following small example consisting of two rules.
rule Send:

[State(~tid, 'ready'), Fr(~n)]
--[Sent(~n)]->

[State(~tid, ~n), Out(~n)]

rule Receive:
[State(~tid, ~n), In(~n)]

53

54 5 Specifying Trace Properties in Tamarin

--[Received(~n)]->
[State(~tid, 'done')]

These rules contain two unary action facts, Sent(·) and Received(·). We will use
these facts to specify a trace property for this protocol stating that any instance of
Received(x) requires that an instance of Sent(x), with the same parameter x,
appears earlier in the trace. We specify this in Tamarin using the keyword lemma
and writing the following formula:
lemma SentBeforeReceived:

"All x #i. Received(x)@#i ==> Ex #j. Sent(x)@#j & #j < #i"

Note that whenever it is clear that a variable must be of timepoint sort, we can (and
often do) omit the # prefix identifying the type of the variable. Hence, in the above
formula, we would usually write Received(x)@i, Sent(x)@j, and j < i.

Note too that the timepoint ordering j < i is not even needed in the above lemma,
as it is implicitly included already. Specifically, observe that the property specified
must hold for all traces of our transition system and we can thus consider the prefix
of any execution up to the timepoint i where Received(x) appears. This prefix is
itself a valid trace and there must therefore be an instance of Sent(x), as otherwise
the formula would be violated on that trace. Hence if the formula is never violated on
any trace, then for all traces every appearance of Received(x) must be preceded by
Sent(x). As an aside, note that without the explicitly given j < i, the formula is
also satisfied when these two events both occur at the same timepoint. This may not
be desirable for all models and thus one adds the ordering. However, the simultaneous
occurrence of these events is impossible for the given transition system.

All lemmas are implicitly considered to be “all-traces” lemmas unless stated otherwise.
This means that they formalize that the given formula holds for all traces of the protocol
model and their proof entails checking that there is no trace violating the formula.
The alternative is “exists-trace” lemmas, for which the keyword exists-trace must
be explicitly added after the rule NAME: before the actual formula to be proven. An
exists-trace lemma is used to check that at least one trace exists. In essence, the proof
of such a lemma attempts to find (and show) a trace. Thus, if a trace is found, its
interpretation is different: for an all-traces lemma, the trace represents a violation,
while for an exists-trace lemma, it represents a success. See the lemma executable
in Section 5.3 for an example.

5.1 Syntax

Formulas in Tamarin are written in a guarded fragment1 of many-sorted first-order
logic with a dedicated sort time for timepoints. Quantification is supported over both
timepoints and messages, using the standard quantifiers. Formulas are then built with

1 In this chapter we will give examples of guarded formulas. We will later formally define guarded
formulas in Section 11.5.

5.1 Syntax 55

standard logical connectives. Timepoint variables must be prefixed with # whenever
it is not guaranteed by the context that they are timepoints as opposed to variables of
type message. We recommend using the timepoint prefix # for all timepoint variables
(except in the case of @#i), but note that this timepoint prefix symbol # may be
omitted in other places as well (see below). The actual syntax is:

• All for universal quantification
• Ex for existential quantification
• ==> for implication
• & for conjunction
• | for disjunction
• not for negation
• f @ i for an action (that includes parameters) f and a timepoint #i (as only

timepoints are possible in that position, the # is optional, and we generally omit it)
• #i < #j for timepoint #i happening prior to #j (also here both # are optional,

but we keep them for clarity)
• #i = #j for timepoint equality (here the # is mandatory)
• x = y for message variable equality
• Pred(t1,...,tn) for the predicate Pred applied to the terms t1 to tn.

Any defined action fact name can be used in formulas, while the terms that are the
arguments of the action facts are limited as follows. They can be constructed from the
quantified variables, single-quote wrapped strings (interpreted as public constants as
explained), and any of the defined free function symbols, i.e., function symbols that
do not appear on the left-hand side of an equation.

Function symbols appearing on the left-hand side of an equation are called reducible
as instances of them in terms may be replaced by (instances of) the equation’s
right-hand side. Reducible function symbols are forbidden in formulas for technical
reasons.2 For example, a hash function h for which no equations are defined is
irreducible and can be used in formulas. For the usual asymmetric encryption with
adec and aenc and the equation adec(aenc(m, pk(k)), k) = m, the function
symbol adec is reducible and thus may not be used in formulas, while aenc is
irreducible and can be used.

All of the variables must be guarded, for example, universally quantified variables
must appear in an action or an equation after the quantifier, and the outermost
logical operator inside the quantifier must be an implication. Essentially, guardedness
requires one to immediately bind quantified variables to actions in the traces. For
the formal definition and recommendations on how to make lemmas guarded, see
Section 11.5. The full input file is available at SentBeforeReceived.spthy. The previous
example lemma named SentBeforeReceived is a guarded formula as the quantified
variable x is immediately used in the Received action, which we show here again:

2 The normalization of reducible functions is performed by pre-computing so-called variants and
this cannot be done in the logical formulas without creating case-splits, resulting in many formulas
that would need to be analyzed. Fortunately, there are ways to work around this limitation, which we
show in Section 15.1.2 for advanced signature models.

56 5 Specifying Trace Properties in Tamarin

lemma SentBeforeReceived:
"All x #i. Received(x)@#i ==> Ex #j. Sent(x)@#j & #j < #i"

If we modify it as follows it would be unguarded:
lemma SentBeforeReceivedUnguarded:

"All x y #i. Received(x)@i ==> Ex #j. Sent(y)@j"

The problem here is that the variable y is quantified in the antecedent of the implication,
but only bound to an action in the consequent, violating our guardedness requirement.

5.2 Semantics of trace formulas

We now give the precise semantics of trace formulas. This section is technical and
may be skipped on first reading. In the following section, Section 5.3, we illustrate
the semantics on a concrete example.

We associate a domain D𝑠 with each sort 𝑠 (namely msg, pub, fr, and time). The
domains for message, fresh, and public variables are ground terms, fresh values, and
public constants respectively (see Section 3.1.2). The domain for temporal variables
D𝑡𝑖𝑚𝑒 is Q. We call a valuation 𝜃 a function from the set of all variables to terms
and Q that respects sorts (e.g., a variable of sort public cannot be mapped to a fresh
value). We homomorphically extend the application of a valuation 𝜃 from variables
to terms, i.e., the application 𝑡𝜃 applies 𝜃 to all variables inside 𝑡.

Given an equational theory 𝐸 , the satisfaction relation (𝑡𝑟, 𝜃) |=𝐸 f between traces
𝑡𝑟 (see Section 3.2.2), valuations 𝜃, and trace formulas f (see Section 5.1) is defined
inductively as follows:

(𝑡𝑟, 𝜃) |=𝐸 fa @ i iff 𝜃 (i) ∈ 𝑖𝑑𝑥(𝑡𝑟) and fa𝜃 ∈𝐸 𝑡𝑟𝜃 (i)
(𝑡𝑟, 𝜃) |=𝐸 All x.g iff for all 𝑢 ∈ D𝑠 : (𝑡𝑟, 𝜃 [x ↦→ 𝑢]) |=𝐸 g,

where x is of sort 𝑠
(𝑡𝑟, 𝜃) |=𝐸 Ex x.g iff there exists 𝑢 ∈ D𝑠 : (𝑡𝑟, 𝜃 [x ↦→ 𝑢]) |=𝐸 g,

where x is of sort 𝑠
(𝑡𝑟, 𝜃) |=𝐸 g ==> h iff (𝑡𝑟, 𝜃) |=𝐸 g implies (𝑡𝑟, 𝜃) |=𝐸 h
(𝑡𝑟, 𝜃) |=𝐸 g & h iff (𝑡𝑟, 𝜃) |=𝐸 g and (𝑡𝑟, 𝜃) |=𝐸 h
(𝑡𝑟, 𝜃) |=𝐸 g | h iff (𝑡𝑟, 𝜃) |=𝐸 g or (𝑡𝑟, 𝜃) |=𝐸 h
(𝑡𝑟, 𝜃) |=𝐸 not g iff not (𝑡𝑟, 𝜃) |=𝐸 g
(𝑡𝑟, 𝜃) |=𝐸 #i < #j iff 𝜃 (i) < 𝜃 (j)
(𝑡𝑟, 𝜃) |=𝐸 #i = #j iff 𝜃 (i) = 𝜃 (j)
(𝑡𝑟, 𝜃) |=𝐸 x = y iff x𝜃 = y𝜃
(𝑡𝑟, 𝜃) |=𝐸 Pred(t1,...,tn) iff (𝑡𝑟, 𝜃) |=𝐸 g and Pred is defined as

Pred(t1,...,tn) <=> g

5.3 Secrecy on a toy example 57

Overloading notation, we write 𝑡𝑟 |=𝐸 f if (𝑡𝑟, 𝜃) |=𝐸 f for all 𝜃, and for a set of
traces TR we write TR |=𝐸 f if 𝑡𝑟 |=𝐸 f for all 𝑡𝑟 ∈ TR. Finally, we say that a set of
rules 𝑅 satisfies a formula f if traces(𝑅) |=𝐸 f.

5.3 Secrecy on a toy example

To illustrate the semantics of formulas just given, we present an example of how to
formulate a simple version of secrecy. The full input file is available at ToySecrecyAu-
thentication.spthy. We do this using a toy protocol that uses a shared symmetric key,
stored in the persistent fact SharedKey and generated by the following rule.
rule GenerateSharedKey:

[Fr(~k)]
--[]->

[!SharedKey(~k)]

We also have two rules that model sending and receiving a fresh value (representing
an arbitrary message) encrypted under a shared key. We use the standard way to
model symmetric encryption in Tamarin, introduced in Section 3.1.4.
rule SendEncrypted:

[!SharedKey(~k), Fr(~n)]
--[Sent(~n,~k)]->

[Out(senc(~n,~k))]

rule ReceiveEncrypted:
[!SharedKey(~k), In(senc(~n,~k))]

--[Received(~n,~k)]->
[]

To rule out careless errors during modeling, we recommend checking that the protocol,
as modeled, is actually executable. This is done by using Tamarin to find a completed
protocol trace where the steps are the expected ones taken by honest agents. Namely,
all received messages should be exactly as they were sent and the execution does not
involve adversary interference, i.e., the adversary does not help participants finish
their roles. Furthermore, one should inspect manually that the rule instances in the
trace are ordered as expected and that no steps are missing.

To ask Tamarin to find such an execution, we use a lemma prefixed using the
exists-trace keyword, which means that a completed trace respecting the property
is considered a success. This keyword is necessary as, by default, Tamarin tries to
prove the property for all traces.3

Our first lemma, named executable, is as follows.
lemma executable:

exists-trace
"Ex n k #i #j. Received(n,k)@i & Sent(n,k)@j"

3 The all-traces keyword can be given, but is usually left implicit. For a lemma with all-traces
the existence of a trace contradicting the property represents an attack.

58 5 Specifying Trace Properties in Tamarin

This lemma can be proven by Tamarin, as there are protocol traces satisfying the
formula. For example, consider the following trace, which corresponds to the three
rules defining the protocol being executing in their normal order:

[∅, {Sent(~n1, ~k1)}, {Received(~n1,~k1)}] .

Note that the first step is the empty set as the rule GenerateSharedKey has no
actions. Given this trace, we see that our lemma holds as there exist values n (~n1
in this example), k (~k1 in this example), #j (2 in this example), and #i (3 in
this example), such that at timepoint 2 we have the action Sent(~n1,~k1) and at
timepoint 3 we have the action Received(~n1,~k1).

Note that there are also protocol traces where the formula given in the lemma
statement is not satisfied. An example is the following trace corresponding to a key
generation and two messages being sent, but without any being received:

[∅, {Sent(~n1, ~k1)}, {Sent(~n2, ~k1)}] .

The lemma however still holds, as it is prefixed with the exists-trace keyword.
Hence it suffices that it is satisfied for at least one protocol trace.

Continuing this example, there are also more complicated protocol traces that satisfy
the formula. As an illustration, consider the following trace:

[∅, {Sent(~n1, ~k1)}, {Sent(~n2, ~k1)}, {Received(~n1,~k1)},
{Received(~n1,~k1)}] .

So what trace will Tamarin return? In general, there is no guarantee that Tamarin
returns the shortest or otherwise “simplest” trace. Note that Tamarin does not return
a trace, but rather a graph representing potentially a set of traces (see Section 6.1 for
details on how to run Tamarin and Section 6.5 on how to read the graphs).

We next formulate the secrecy of the sent term n. Namely, we state that whenever the
value n is sent encrypted with the key k, then the adversary does not know the value
n. To this end, we make use of action facts of the form K(m), which represent the
adversary’s knowledge of some message m.
lemma secrecy:

"All n k #i. Sent(n,k)@i ==> not (Ex #j. K(n)@j)"

When verifying this lemma, Tamarin proves that for all traces, if there is a Sent(n,k)
action on the trace, there cannot be a K(n) action on the trace. Note that there is
no constraint on the events’ ordering. Hence, both a trace where the K(n) happens
before the Sent(n,k) event or a trace where K(n) happens afterward constitute
counterexamples. For example, both of the traces

[. . . , {Sent(~n1,~k1)}, . . . , {K(~n1)}, . . .]

and

5.4 Authentication on the toy example 59

[. . . , {K(~n1)}, . . . , {Sent(~n1,~k1)}, . . .]

are counterexamples.

As further examples, the following two traces satisfy the formula and are not
counterexamples.

[∅, {K(~n1)}, {Sent(~n2,~k1)}, {Received(~n2,~k1)}]

[∅, {K(~n1)}, {Sent(~n2,~k1)}, {Received(~n1,~k1)}]

The first trace is a normal protocol execution, with the adversary additionally
generating a fresh value, which is however unrelated to the values used by the
protocol; hence the formula is satisfied even though a K action occurs. The second
trace satisfies the formula, but it cannot be generated by the given protocol rules:
it is impossible to receive a message that was not sent because of the symmetric
encryption using the shared key, which prevents the adversary from producing a valid
message. Here, because the protocol’s rules use the built-in In(·) and Out(·) facts
for sending and receiving messages, the threat model that is considered is Tamarin’s
default adversary that controls the network. In this model, the adversary cannot access
the shared keys as long as they are not explicitly revealed, and therefore cannot act as
a malicious agent. We will return to modeling malicious or compromised agents in
Section 5.7.

For the given protocol, this lemma will be verified automatically by Tamarin. It
holds because the adversary has no way to decrypt the message enc(n,k) as it lacks
knowledge of the shared key k. This is because there is no rule revealing this shared
key to the adversary, and there is no way for the adversary to deduce it from what is
sent, since encryption is assumed to work perfectly, as is usual in the symbolic model.

5.4 Authentication on the toy example

To continue the previous example, we illustrate a simple authentication property:
lemma authentication:

"All n k #i. Received(n,k)@i ==> Ex #j. Sent(n,k)@j"

This lemma states that whenever a party with the secret key k has received n, then n
was actually (previously) sent by someone with access to that secret key. Tamarin
easily verifies this lemma.

Note that in our specification of this property, we did not refer to the names of agents
or exclude the case that an agent may be talking to itself. Augmenting the specification
to explicitly exclude such cases will be explained later.

60 5 Specifying Trace Properties in Tamarin

5.5 Modeling a public key infrastructure

In the remaining sections of this chapter we will model a public key infrastructure
(PKI) in which all agents have a public/private key pair, and each agent knows
the public keys of all other agents. To model this, we assume the existence of
a function pk/1 that, given a private key, returns the corresponding public key.
This function is already predefined when using one of the two built-in models
asymmetric-encryption and signing. Otherwise, the function can be explicitly
defined using:
functions: pk/1

To model the PKI, we introduce a rule for key registration, with the full file available
at PKIdef.spthy.
rule Register_pk:

[Fr(~ltk)]
-->

[!Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk))]

The rule Register_pk creates a new fresh key ~ltk and assigns this to the agent $A as
A’s private key. This rule creates persistent facts !Ltk(A, ltk) and !Pk(A, pubk)
for the private and public key. Additionally, the public key is given to the adversary
using the Out(·) fact, effectively making the key public. To model that any agent X
accesses its private key, a protocol rule that is executed by X can look up the persistent
fact !Ltk(X, ltk) and use ltk. The fact !Pk(X, pubk) can be used to get the
public key pubk of any agent X. We will see concrete examples of how such facts are
used in protocol rules in the next sections.

This basic PKI model can be extended to model various forms of compromise and
corruption, i.e., the fact that the adversary might learn the private keys of some agents,
or is a malicious agent. We will return to this in Section 5.7.

5.6 Simplified Signed Diffie-Hellman Example

We next consider an example of slightly greater complexity that provides a more
realistic example of formalizing secrecy. Namely we formalize a simplified version
of the Signed Diffie-Hellman protocol with the same threat model of an adversary
that actively controls the network.

In this protocol, we have two rules for the initiator, who sends a message and
subsequently receives a response, and a single rule for the responder, who receives
a message and immediately responds. The second rule of the initiator and the one
responder rule have the action SessionKey with the key as a parameter. The secrecy
lemma, called Secrecy, asserts that the adversary never learns the claimed key. We
explain this step-by-step.

5.6 Simplified Signed Diffie-Hellman Example 61

The theory name is SignedDH_simple, and we include the two built-in theories
diffie-hellman and signing. The former was explained previously in Example 4
and the latter will be given in Section 7.1.4 and explained there. In short, the signing
built-in adds an operator pk/1 (just like asymmetric encryption) and a constant
true/0, as well as a sign/2 and verify/3 operator. The idea is that signing takes
a message and a private key, while verifying takes a message, a signature, and a
public key. Signature verification then returns the result true only when a correctly
built signature is verified against the right message. The full input file is available
at SignedDH_simple.spthy.
theory SignedDH_simple begin

builtins: diffie-hellman, signing

Next, we create the public key infrastructure as described in Section 5.5.
rule Register_pk:

[Fr(~ltk)]
-->

[!Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk))]

The initiator’s first rule picks a fresh thread-id ~tid for identification, picks a fresh
ephemeral DH public key ~ekI, looks up its private signing key, and sends out its
name $I, its expected partner’s name $R, the DH exponentiation 'g'ˆ~ekI, and a
signature with its private key on a tag '1' and the previously mentioned three values.
The tag is used to ensure that a responder’s message is not mistaken for an initiator’s
message. A state fact Init_1(·) stores all the required information.
rule Init_1:

[Fr(~tid), Fr(~ekI), !Ltk($I, ltkI)]
-->
[Init_1(~tid, $I, $R, ~ekI)
, Out(<$I, $R, 'g' ^ ~ekI, sign(<'1', $I, $R,'g'^~ekI>,ltkI) >)]

The initiator’s second rule looks up the state in Init_1(·), looks up the partner’s
public key, and receives the response message from the responder. It checks the
signature’s validity with the retrieved public key, and expects the tag '2' to be
included. This signature verification is encoded using the built-in _restrict action
fact, which we will explain in detail in Section 5.10.3. The received message consists
of the responder and initiator names, a DH share from the responder that is received
and stored as Y, and the signature on all this. The rule also emits the action fact
SessionKey(·) with the DH shared value Yˆ~ekI, i.e., the exponentiation of the
received Y with the initiator’s own private share.
rule Init_2:

[Init_1(~tid, $I, $R, ~ekI)
, !Pk($R, pkR)
, In(<$R, $I, Y, m2>)
]

--[_restrict(verify(m2, <'2', $R, $I, Y>, pkR) = true)
, SessionKey($I,$R, Y^~ekI)]->
[]

62 5 Specifying Trace Properties in Tamarin

The responder uses a single rule to receive the message from the initiator and then to
respond. For this, it looks up its own secret key in order to produce a signature, and
the partner’s public key to verify their signature on the received message. The DH
share from the responder’s partner is received as X and the resulting shared secret is
Xˆ~ekR, emitted in the action SessionKey(·). No thread-id is used here as no state
is kept.
rule Resp:

[!Pk($I, pkI)
, !Ltk($R, ltkR)
, Fr(~ekR)
, In(<$I, $R, X, m1>)
]

--[_restrict(verify(m1, <'1', $I, $R, X>, pkI) = true)
, SessionKey($I,$R, X^~ekR)]->
[Out(<$R, $I, 'g'^~ekR, sign(<'2', $R, $I, 'g'^~ekR >, ltkR)>)]

The secrecy lemma states that for all SessionKey(·) actions in the trace, the
adversary will not know the claimed session key sessKey.
lemma Secrecy:

"All I R sessKey #i.
SessionKey(I,R,sessKey)@i
==> not (Ex #j. K(sessKey)@j) "

This lemma is verified by Tamarin as the adversary cannot get the ephemeral secret
of either of the participants and cannot compute the shared key without at least one
of the two ephemerals.

5.7 Modeling malicious or compromised agents

In the previous examples, we considered a threat model with an adversary that actively
controls the network, but is otherwise an outsider to the system. In many cases,
we want to prove much stronger security guarantees, for example with respect to
threat models in which some of the agents are malicious, or where the adversary can
compromise data from some agents at some point in time.

The standard way of modeling malicious agents is to allow the adversary to obtain
the long-term secrets of parties, often modeled in a Reveal (or Corrupt) rule.
For protocols whose outputs are strictly computed by applying public functions to
the agent’s long-term secrets, received inputs, and fresh values, an active network
adversary can emulate the agent’s honest behavior by using the agent’s long-term
keys.

We can specify a threat model that includes malicious agents by including a rule that
reveals their long-term keys to the adversary. This rule is annotated with an action
Reveal(·), whose argument denotes the party whose long-term keys are revealed.
Messages constructed using those long-term keys might therefore be maliciously

5.7 Modeling malicious or compromised agents 63

generated. So, for a long-term key stored in an Ltk(·) fact, we can model a reveal
rule as follows, with the full input file available at ToyRevealHonest.spthy.
rule Reveal_ltk:

[!Ltk(A, k)]
--[Reveal(A)]->

[Out(k)]

Here, the private key k is output to the network, and we record in the trace that the agent
named A has been compromised, by a Reveal(A) action. Thus, if Reveal(X) occurs
in a trace for some X, we consider X to be a potentially malicious or compromised
agent. If a Reveal(X) does not occur, we say that X is honest.

In a given execution of a protocol, there are typically multiple concurrent sessions
between many pairs of agents. For a threat model with malicious agents, standard
properties that we would like to express are often of the form “if the participants of
my session are honest, then the key should be secret”, or “if my partner is honest,
then authentication should hold”.

To formulate such properties, we need to record for each session who the participants
are in a particular instance of the protocol. There are different ways of doing this, and
which one is best depends on the property we want to specify.

For example, in the rule below, the agent A is in its final state and believes that it
shares a key t with the agent B, as formalized by the Completed(A,B,t) action.
To make it easier to specify specific threat models later, we additionally record
other actions: The CompletedKey(t) action independently records the key, the
Actor(A) action records that 𝐴 is the identity of the party executing the rule, and
Peer(B)4 records that 𝐵 is the intended communication partner. For some properties,
we want to refer to all parties assumed to be involved, for which we record the
actions Participant(A) and Participant(B). Note that all properties that can
be specified using these five action facts can also be specified using only the first
action fact (Completed(A,B,t)), and we will show some examples below. However,
using meaningful action fact names can make property specifications clearer and can
prevent modeling errors.
rule Finish:

[FinalState(A, t, B)]
--[Completed(A,B,t)

, CompletedKey(t)
, Actor(A), Peer(B)
, Participant(A), Participant(B)]->
[]

Properties can then be made conditional on the fact that some parties should be
honest (e.g., the actor, the peer, or both participants). For example, if we only want
to specify that a key is secret if both parties are honest, we can use one of the three
formulations below, which are equivalent and all of them are verified successfully.

4 In the literature, the intended communication partner is often referred to as the peer. In this book,
we use the terms peer and partner interchangeably.

64 5 Specifying Trace Properties in Tamarin

lemma SecrecyByState:
"All A B t #i. Completed(A,B,t) @i

& not (Ex #k. Reveal(A)@k)
& not (Ex #k. Reveal(B)@k)

==> not (Ex #j. K(t)@j)"

lemma SecrecyActorPeer:
"All A B t #i. CompletedKey(t) @i

& Actor(A)@i & not (Ex #k. Reveal(A)@k)
& Peer(B)@i & not (Ex #k. Reveal(B)@k)

==> not (Ex #j. K(t)@j)"

lemma SecrecyHonestParticipants:
"All A B t #i. Completed(A,B,t) @i

& not(Ex C #k. Participant(C)@i & Reveal(C)@k)
==> not (Ex #j. K(t)@j)"

If we want to strengthen our threat model to also include key-compromise imperson-
ation style attacks [19,27,76], we should also consider the security of sessions whose
actor was compromised, i.e., where only the peer is honest. Intuitively, the idea is that
in the presence of an active network adversary, the security of an agent’s protocol
thread need not depend on the security of that agent’s long-term keys – the agent
knows who it is – but still crucially relies of the security of the peer’s long-term keys.

The preceding SecrecyHonestParticipants lemma is not suitable to specify
such a stronger property where only the peer is required to be honest because
we cannot identify the peer. However, the first two lemmas, SecrecyByState and
SecrecyActorPeer, can be directly adapted, leading to the following two properties.
lemma SecrecyByStateOnlyPeer:

"All A B t #i. Completed(A,B,t) @i
& not (Ex #k. Reveal(B)@k)

==> not (Ex #j. K(t)@j)"

lemma SecrecyActorPeerOnlyPeer:
"All t #i B. CompletedKey(t) @i

& Peer(B)@i & not (Ex #k. Reveal(B)@k)
==> not (Ex #j. K(t)@j)"

In this example protocol, both lemmas are successfully verified. However, for other
protocols, the results could be different for the preceding three lemmas. For example,
the Needham-Schroeder-Lowe protocol [84] serves as a differentiating example, as
all sessions with honest participants are secure, but sessions whose actor can be
compromised are insecure. More examples are given in [19,27]. We will also expand
on this further in the next sections with different flavors of secrecy, and a hierarchy of
authentication properties.

5.8 Flavors of secrecy 65

5.8 Flavors of secrecy

Some initial intuition on how to specify secrecy is given in Section 5.3. However,
there are many different flavors of secrecy. For all of them, in the rule where an
agent believes that a value is secret, we use a Secret(·) or SessionKey(·) or
Property(·) action and then formulate the actual notion of secrecy using a lemma.
Note that you can use any other name for these action facts in your models instead.

First, there is secrecy in the case where there is no adversary corruption, yielding the
standard lemma seen before in Section 5.3 or Section 5.6 and called Secrecy there. In
the following, we use the Signed Diffie-Hellman protocol from SignedDH_PFS.spthy for
which we have seen a simpler version in Section 5.6. The first lemma we recall is the
one given there, where the adversary is essentially passive and not a participant. Note
the name of the action pointing to the completion of the protocol is now SessionKey
and takes three arguments: two agent names followed by the key.
lemma Secrecy:

"All I R sessKey #i.
SessionKey(I,R,sessKey)@i
==> not (Ex #j. K(sessKey)@j) "

Tamarin proves this lemma in the simple previous version. However it triggers a
violation in an extended model of the protocol where the following reveal rule (see
Section 5.7) is included.
rule Reveal_ltk:

[!Ltk(A, ltk)]
--[LtkReveal(A)]->

[Out(ltk)]

This rule models a long-term key reveal and its application compromises the long-term
key of an agent. As explained in Section 5.7, this also models malicious agents. Other
kinds of reveals are also possible, such as partial or full session state reveal, all of
which can be modeled, see Section 10.3.

Then, secrecy with an active adversary that can compromise the long-term keys of
participants and that can be a malicious participant itself, can be checked with the
following lemma. This property is only of interest when neither of the two parties
in the current protocol run have been compromised, as otherwise the property will
be trivially violated, hence these cases are excluded in the lemma. Note that an
adversary can compromise all other parties. Here, this does not give the adversary
any advantage as every other party also running a version of this protocol is irrelevant
for this property.
lemma Secrecy_nopartners_revealed:

"All I R sessKey #i.
SessionKey(I,R,sessKey)@i
& not (Ex #k. LtkReveal(I) @k)
& not (Ex #k. LtkReveal(R) @k)
==> not (Ex #j. K(sessKey)@j) "

66 5 Specifying Trace Properties in Tamarin

We can also define forward secrecy (sometimes called perfect forward secrecy) where
even the possible compromise of a long-term key after a session does not allow the
adversary to recover session keys. This is an even stronger version of the previous
lemma. In this scenario, everyone else can always be compromised, and the parties
involved in the protocol can be compromised afterwards.
lemma Secrecy_Forward:

"All I R sessKey #i.
SessionKey(I,R,sessKey)@i
& not (Ex #k. LtkReveal(I) @k & #k < #i)
& not (Ex #k. LtkReveal(R) @k & #k < #i)
==> not (Ex #j. K(sessKey)@j) "

Tamarin verifies that the SignedDH_PFS protocol satisfies the last two properties.
Tamarin also finds a counterexample that shows a violation of the simple Secrecy
lemma, as before.

Alternative versions of secrecy can be specified that account for the compromise of
the participating agents’ ephemeral keys. Those versions of secrecy also allow the
combination of the reveal of the participating agents’ long-term and ephemeral keys.
Furthermore, extended Canetti-Krawczyk (eCK) secrecy with a notion of matching
session can be modeled. Examples for all this can be found in the Tamarin GitHub
repository.

5.9 A hierarchy of authentication properties

There are many different notions of authentication considered in the literature. They
often have subtle, but important, differences in the guarantees they provide as each
captures different aspects of authentication and, depending on the context, different
authentication properties are relevant. Tamarin’s property language is very flexible
and can be used to state a wide range of properties, as the modeler desires.

A fairly standard set of properties, used in many case studies, is based on Lowe’s
hierarchy of authentication properties [85]. We use this hierarchy to introduce the
reader to different ways to formalize standard authentication properties in two party
protocols. The hierarchy contains four properties, listed in increasing strength, i.e.,
each property entails those preceding it.

• aliveness
• weak agreement
• non-injective agreement
• injective agreement

Furthermore, note that each of these properties applies from either party’s viewpoint,
and possibly for different terms that one wants to agree upon. Moreover, our convention
for action facts is that their first argument given is always the name of the party in
whose rule the action appears.

5.9 A hierarchy of authentication properties 67

Now, these protocols have agents named A and B (public variables) executing the roles
'A' and 'B' (constants) respectively. The authentication property is for an agent
in the role 'A' to authenticate an agent in the role 'B'. The actions are as follows:
Commit(A,B,<'A','B',t>) appears in the rule where the agent A in the role 'A'
has all the information it needs to conclude that the protocol execution was a success,
which is usually at the end of a run.

Specifically, the action contains the party’s name A as the first argument, their partner’s
name B as the second argument, and a triple as the third argument. The triple in turn
consists of the role constant 'A' of the role for which this Commit will be used in a
property, the role constant 'B' for the partner role, and the actual data t.

For the agent B in the role 'B', there is then the related action
Running(B,A,<'A','B',t>) added to a rule appearing after this agent
has all the relevant information, in particular knowing its partner’s name and the
term t on which agreement is sought. Note that the agent in whose rule this appears
is named first following our convention, i.e., B is the first argument. The partner A is
given as the second argument. Importantly, the triple still starts with 'A', followed by
'B', as this Running fact is used for the property from the point of view of role 'A'.

Additionally, when using these actions in lemmas, we sometimes shorten the triple
<'A','B',t>, which we write in the rules, to just a variable params in the lemmas. Of
course, the variable params can pattern-match <'A','B',t>, so it is appropriately
instantiated. See also the following (non-)injective agreement formulations for
examples of this use.

In the formulas for (non-)injective agreement below, we will have that for all Commit
claims there exists a matching Running claim. This of course means that such
a Running claim happened before the Commit, as discussed in the initial part
of Chapter 5. Therefore, for a protocol to possibly satisfy such a property, the rule
in which the Running claim is an action must causally precede the rule where the
Commit happens. This notion of “causally preceding” is commonly achieved by the
rules being linked with a message flow from the former to the latter rule.

We have formulated the arguments for Commit and Running in a way that avoids a
possible confusion where a Commit and Running are matched when executed by the
same role. We achieve this through the ordering of the fixed role constants 'A' and 'B'
in the arguments. When used in the order 'A','B' then the property is for the agent in
the role 'A'. Otherwise, when the constants are ordered 'B','A' it is for the agent in the
role 'B'. These are set when the action is given in a rule. In the lemma, they just need
to be the same for the two actions to match.5 The resulting lemmas for each level are
then as follows.
5 An alternative modeling approach could rename the actions with, e.g., a postfix label naming the
viewpoint. So Commit(·) would become Commit_A(·). The drawback with this alternative is that
lemmas must now be written twice, once for each viewpoint, and even more often for protocols with
more parties. (We do not show this alternative version here, but note that it is an easy exercise to
write them down.)

68 5 Specifying Trace Properties in Tamarin

We explain next the main authentication properties and formally specify them as
well. For their formal specifications, we fix a basic threat model, specifying that the
property must hold for all sessions whose participants are not compromised, but
other agents may be compromised. The properties can be similarly specified with
respect to other threat models, for example, where the adversary is an outsider that
cannot compromise or impersonate agents, or where the adversary can even corrupt
the actor but not the peer of the session.

Aliveness is the weakest property. It only requires that the partner has previously
run the protocol, possibly in a different role and with someone else as the perceived
partner. Here, A is the party for which the lemma is expressed and B is the partner. Note
that this lemma uses a new kind of actions called Create, which is logged whenever
the agent name of the expected B is instantiated with an additional thread identifier,
and the role it is created in, e.g., Create(B, id, ’A’). This must have happened
at a prior timepoint. For the example threat model, we specify that the property is
required to hold if the session’s participants are not compromised (indicated by the
Reveal(·) action.)
lemma aliveness:

"All A B t #i.
Commit(A,B,t)@i

& not (Ex #r. Reveal(A) @ r)
& not (Ex #r. Reveal(B) @ r)

==> (Ex id rl #j. Create(B,id,rl) @ j & j < i)"

Weak agreement is next in the hierarchy and the agreement here is only on the
partner’s name, not on the actual roles or on any term. Hence the Commit and
Running actions used for this property usually do not include roles.
lemma weakagree:

" /* Whenever somebody commits to running a session, then*/
All A B t1 #i.
Commit(A, B, t1) @ i

/* and adversary did not reveal the participants' long-term keys */
& not (Ex #r. Reveal(A)@r)
& not (Ex #r. Reveal(B)@r)

==>
/* there is somebody running a session with matching participants */

(Ex t2 #j. Running(B, A, t2) @j & j < i)"

Non-injective agreement ensures that the correct partner matches, the partner is in
the right role, and the partner has the same view on the agreed upon term. So the
agents really talked to each other with the right values. However, it is possible to
replay messages so that a party would accept this again.
lemma noninjective_agree:

" /* Whenever somebody commits to running a session, then*/
All actor peer params #i.

Commit(actor, peer, params) @ i
/* and adversary did not reveal the participants' long-term keys */
& not (Ex #r. Reveal(actor)@r)
& not (Ex #r. Reveal(peer)@r)
==>

5.9 A hierarchy of authentication properties 69

/* there is somebody running a session with the same parameters */
(Ex #j. Running(peer, actor, params) @ j & j < i)"

Injective agreement is the strongest property in the hierarchy presented. It is like
non-injective agreement but with an added uniqueness property, ensuring that replays
are prevented. Essentially, no second Commit instance is possible for the same term
t.
lemma injective_agree:

" /* Whenever somebody commits to running a session, then*/
All actor peer params #i.

Commit(actor, peer, params) @ i
/* and the adversary did not reveal the participants' long-term keys */
& not (Ex #r. Reveal(actor)@r)
& not (Ex #r. Reveal(peer)@r)
==>

/* there is somebody running a session with the same parameters */
(Ex #j. Running(peer, actor, params) @ j & j < i

/* and there is no other commit on the same parameters */
& not(Ex actor2 peer2 #i2.

Commit(actor2, peer2, params) @ i2 & not(#i = #i2)
)

)"

In general, the respective timepoint ordering in these four lemmas for the Commit
happening before the Running, usually expressed as j < i, can be omitted, yielding
equivalent lemmas. This is because the adversary can just stop the run at the point
when the Commit is emitted, and then either there is a Running that comes before,
or the lemma is violated. However, as we will later see, there is an exception to
this. Namely, users can specify so-called trace restrictions (Section 5.10.2) to ensure
progress of some kind and, in this case, the equivalence may no longer hold. It is
therefore prudent to explicitly specify the timepoint ordering.

Separating examples

We now exemplify the different properties on a number of simple examples, high-
lighting the difference between them. In all these examples, we use the previously
described public key infrastructure, with a long-term key reveal, that we recall first:
rule Register_pk:

[Fr(~ltkA)]
--[Register($A)]->

[!Ltk($A, ~ltkA), !Pk($A, pk(~ltkA)), Out(pk(~ltkA))]

rule Reveal_ltk:
[!Ltk(A, ltkA)] --[Reveal(A)]-> [Out(ltkA)]

Example 10 (Weak Agreement) First, we present the example protocol where the
initiator sends its name and its desired partner’s name, signed under its private key,
to the partner. The expected response is the same content, signed by the partner’s
private key:
1. A -> B: sign(<A,B>,sk(A))
2. A <- B: sign(<A,B>,sk(B))

70 5 Specifying Trace Properties in Tamarin

The initiator rules are
rule Init_A:

[Fr(~id)
, !Ltk(I, ltkI), !Pk(R,pkR)
]

--[Create(I, ~id, 'A')]->
[St_A_1(I, ~id, ltkI, pkR, R)
]

rule A_1_send:
[St_A_1(I, ~id, ltkI, pkR, R)
]

--[Running(I, R, 'anyroles') // relevant for weak agreement only,
// as the roles are not taken into account

]->
[St_A_2(I, ~id, ltkI, pkR, R)
, Out(sign(<I,R>,ltkI))
]

rule A_2_receive:
[St_A_2(I, ~id, ltkI, pkR, R)
, In(mA2)
]

--[_restrict(verify(mA2, <I,R>, pkR) = true)
, Commit(I, R, <'Init', 'Resp'>)
, Finish(I, R)
]->
[
]

and the responder rules are
rule Init_B:

[Fr(~id)
, !Ltk(R, ltkR), !Pk(I, pkI)
]

--[Create(R, ~id, 'B')]->
[St_B_1(R, ~id, ltkR, pkI, I)
]

rule B_receive_send:
[St_B_1(R, ~id, ltkR, pkI, I)
, In(mB1)
]

--[_restrict(verify(mB1, <I,R>, pkI) = true)
, Running(R, I, <'Init', 'Resp'>)
]->
[Out(sign(<I,R>,ltkR))
]

with the executability specified by this lemma (whose proof succeeds and results in
an example graph in interactive mode).

/* and the adversary did not reveal the participants' long-term keys */
& not (Ex #r. Reveal(actor)@r)
& not (Ex #r. Reveal(peer)@r)
==>

/* there is somebody running a session with the same parameters */
(Ex #j. Running(peer, actor, params) @ j & j < i

5.9 A hierarchy of authentication properties 71

/* and there is no other commit on the same parameters */
& not(Ex actor2 peer2 #i2.

Note that in this example, we modeled signature verification using embedded
restrictions using the _restrict(·) action fact, which we will explain in detail in
Section 5.10.3.

This protocol provides weak agreement as the parties indeed have the same (correct)
view that they are talking to each other. Hence Tamarin verifies this lemma. Note,
however, that there is no replay protection and that an initiator message can be
seen as a responder message from that agent. Thus, this example does not provide
non-injective or injective agreement, and the file AuthHierarchy1WA.spthy gives further
details for this example. This protocol provides aliveness of course, which is also
verified by Tamarin in the file, while the stronger (non-)injective agreement property
lemmas are violated.

Example 11 (Non-injective agreement) The next protocol provides non-injective
agreement, but not injective agreement. Thus it is susceptible to replay attacks. Its first
message is the same as in the previous protocol, but the second message contains only
the initiator’s name, signed by the responder. This way, the message of an initiator
(respectively responder) cannot be mistaken as one coming from that agent but in the
responder (respectively initiator) role. The protocol is:
1. A -> B: sign(<A,B>,sk(A))
2. A <- B: sign(A, sk(B))

See the file AuthHierarchy2NIA.spthy for the Tamarin code for this example, which
provides non-injective agreement but not injective agreement. The injective agreement
lemma shows a violation, while both the non-injective agreement and weak agreement
lemmas are verified.

Example 12 (Injective Agreement) Our last example provides all the illustrated
authentication properties including injective agreement. The example includes a fresh
nonce to distinguish different runs, thereby preventing replay. The protocol is:
1. A -> B: Na, sign(<A,B>,sk(A))
2. A <- B: sign(<A, Na>,sk(B))

See the file AuthHierarchy3IA.spthy for the Tamarin code for the example providing
injective agreement. All the lemmas are successfully verified in this theory.

Note that all of the properties we presented above are from the point of view of
the initiator, while the responder is ignored. Also note that as Tamarin’s property
specification is general purpose, one can formulate other authentication properties as
required. For example, one could capture a notion like anonymous agreement where
a party knows that they agree on data with another party, without knowing who that
party is.

72 5 Specifying Trace Properties in Tamarin

5.10 Additional features for specifying properties

Tamarin provides several additional mechanisms to help users specify properties and
to use them for fine-grained system modeling: predicates, restrictions, and embedded
restrictions.

5.10.1 Predicates

It is common to re-use formulas, or parts thereof, across models. To reduce duplication,
users can define predicates as formula shorthands. A predicate is written as

predicates: Formula1 <=> Formula2

which is syntactic sugar for inlining Formula2 everywhere Formula1 is written.
This applies in both lemmas and restrictions.

For example, one could define:
builtins: multiset
predicates: Smaller(x,y) <=> Ex z. x + z = y

[...]

lemma one_smaller_two:
"All x y #i. B(x,y)@i ==> Smaller(x,y)"

Similar to builtins, one may use predicates to define multiple predicates by
separating them with commas and optional whitespace, including newlines.

5.10.2 Restrictions

Restrictions are also trace properties and they have the same format as lemmas,
although their semantics and usage are rather different. Like lemmas, restrictions
are guarded first-order logic formulas, introduced with the keyword restriction.
In contrast to lemmas, a restriction limits the set of traces Tamarin considers. A
restriction is thus never proven. Instead, it constitutes an assumption about the system,
and any property proven for a system with restrictions is only guaranteed to hold
with respect to the stated restrictions. The following restrictions are collected and
available at Restrictions.spthy.

As a simple example, consider a restriction stating the equality of two terms occurring
in a specific action.
restriction Equality:

"All x y #i. Eq(x,y) @#i ==> x = y"

5.10 Additional features for specifying properties 73

This restriction will ensure that in any rule with the Eq(x,y) action, the terms
matched by the variables x and y are the same (considered modulo the equational
theory, as usual). The modeler can then add an Eq action to any rule where such
an equality is desired. This can, for example, be used to check whether a signature
verification succeeds, whether a message decrypts correctly and yields the challenge
sent by the agent, etc. For example, using the signature built-in (See Section 7.1), the
following rule uses the restriction for the Eq action fact to model signature verification:
builtins: signing

rule R_Recv_Verify_Signature:
[In(m)
, S_R_1(~tid, $I, $R, ~nonce, pkI)
]

--[Eq(verify(m, <$R,~nonce>, pkI), true)
]->
[S_R_2(~tid, $I, $R, ~nonce, pkI)
]

For this rule with the Equality restriction above, properties would only be evaluated
for traces where the received messages in all instances of this rule are successfully
verified to be signatures of the corresponding instances of $R and ~nonce with
respect to the key pkI.

There are other common restrictions that are used frequently, which capture relations
such as inequality, comparison, and the number of occurrences of rule instances.
As usual, the actions used in these restrictions must be added appropriately to the
system’s rules. We give examples of such restrictions next.

We can specify an Inequality restriction using a similar annotation, Neq(x,y), but
stating that it is not the case that the two values are the same:
restriction Inequality:

"All x #i. Neq(x,x) @ #i ==> F"

OnlyOnce is a restriction specifying that certain actions, possibly with specific
parameters, occur at most once in a trace. We specify two different versions of it:
restriction OnlyOnce:

"All #i #j. OnlyOnce()@#i & OnlyOnce()@#j ==> #i = #j"
restriction OnlyOnceV:

"All #i #j x. OnlyOnceV(x)@#i & OnlyOnceV(x)@#j ==> #i = #j"

The version OnlyOnce() without a parameter can occur at most once in any rule
instance. For example, with the above restrictions, if OnlyOnce() is an action in the
rules R1 and R2, then each trace can have at most one instance of either of R1 or R2.

The generalized version OnlyOnceV(x) is sometimes also called Unique(x), and
enables more fine-grained specification. This restriction states that OnlyOnceV(x)
can occur at most once in each trace for a specific value of x.

In practice, we can use this to restrict specific rules to at most one instance, but
still allow multiple different rules to occur in the same trace, by putting an action
OnlyOnceV(’R1’) in rule R1, and OnlyOnceV(’R2’) in rule R2.

74 5 Specifying Trace Properties in Tamarin

Moreover, we can also use it to restrict specific uses of a rule. For example, we can
ensure that each agent registers only one key in a PKI, for example by modifying the
key registration in Section 5.6 in the following way:
rule Register_pk:

[Fr(~ltk)]
--[OnlyOnceV(<'key',$A>)]->

[!Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk))]

The resulting model, available at SignedDH_simple_OnlyOnceV.spthy still allows any
number of agents to register public keys, but each agent can register at most one key.

The SubMultiset and SuperMultiset restrictions can be used to specify orderings
using the built-in multiset. We can then add a restriction to enforce the subset or
superset orderings. The action goes on a rule as usual, and the restriction to add is as
follows.
builtins: multiset
restriction SubMultiset:

"All x y #i. SubMultiset(x,y)@#i ==> Ex z. x + z = y"
restriction SuperMultiset:

"All x y #i. SuperMultiset(x,y)@#i ==> Ex z. x = y + z"

Some example uses for restrictions are:

• accepting only particular values for certain inputs, using the equality restriction
above; for example, checking that the verification of a signature succeeds; and

• limiting the number of sessions to show a smaller, nicer-looking attack, if there is
one.

As mentioned earlier, restrictions are assumptions. They must therefore be carefully
considered and justified by the modeler outside of Tamarin.

5.10.3 Embedded restrictions

Using the special _restrict keyword as an action, which takes a formula as an
argument, we can specify restrictions directly within rules, with the full file available
at CombinedRestrictions.spthy.
rule MakeChoice:

[In($X)]
--[Choice($X), _restrict(($X='string1') | ($X='string2'))]->

[Chosen($X)]

Informally, the restriction specifies that the rule can only fire if $X is equal to either
’string1’ or ’string2’. Such restrictions can also be useful when modeling
branching or case distinctions, where each case has its own rule with a corresponding
embedded restriction, or to model that a protocol step performs specific checks, such
as verifying a signature or comparing multiple values.

5.10 Additional features for specifying properties 75

When Tamarin encounters rules with embedded restrictions, it automatically replaces
the embedded restriction by an action that stores the relevant variables, and generates a
restriction as in Section 5.10.2. For example, the above rule MakeChoice is internally
translated into the following:

[In($X)]
--[Choice($X), Restr_MakeChoice_1($X, $X)]->
[Chosen($X)]

Note the automatically generated Restr_MakeChoice_1 fact6, which records the
local variables of the rule instance relevant for the restriction. The corresponding
restriction is generated as:

"∀ x #NOW x.1.
(Restr_MakeChoice_1(x, x.1) @ #NOW) ⇒
((x = 'string1') ∨ (x.1 = 'string2'))"

The automatically generated restrictions identify the timepoint of the rule instance
by the variable #NOW. The full expanded file is available at CombinedRestrictions-
expanded.spthy.

For this model, we can prove the following expected lemma, which states that the
only choices that can ever occur in a trace must be either string1 or string2:
lemma ChoiceInvariant:

"All x #i. Choice(x)@i ==> (x='string1')|(x='string2')"

Embedded restrictions can also be used to formulate more complex constraints. For
example, we can specify that a rule can only be instantiated in traces where another
action fact occurs:
rule AfterChoice:

[Chosen('string1')]
--[AfterString1(), _restrict(Ex #i. Choice('string2')@i)]->

[]

When we add this rule with its embedded restriction, Tamarin internally automatically
translates AfterChoice into the rule

[Chosen('string1')]
--[AfterString1(), Restr_AfterChoice_1()]->
[]

and the restriction
"∀ #NOW.

(Restr_AfterChoice_1() @ #NOW) ⇒ (∃ #i. Choice('string2') @ #i)"

Intuitively, the AfterChoice rule can only be instantiated when the left-hand side
is contained in the global state, and the restriction holds. This implies that both
’string1’ and ’string2’ must both occur as choices in the trace. Indeed, Tamarin
can prove the following lemma.

6 The name of this fact, which is automatically generated, is irrelevant and simply must be unique.

76 5 Specifying Trace Properties in Tamarin

lemma CombinedRestrictions:
"All #i. AfterString1()@i ==> (

(Ex #j. Choice('string1')@j)
&
(Ex #j. Choice('string2')@j)

)"
end

Another example of the use of embedded restrictions can be found in Example 10,
where we used them to model signature verification.

5.10.4 Combining predicates and restrictions for branching

In real-world systems, the formulas that specify case or branch conditions can
be complex and often include “else” branches. To avoid duplication and increase
readability, we can combine embedded restrictions with predicates.

In the following example, our goal is to have a case distinction on an adversary-
provided value:

Case A: its top-level operator is f;

Case B: its top-level operator is g with the specific first argument ’1’; or

Case C: the value is something else.

The following model captures these options using predicates and embedded restric-
tions, both to improve readability and to encode the else-clause for case C, with the
full file at RestrictionsPredicatesElse.spthy.
functions: f/1, g/2

predicates: ConditionA(x) <=> (Ex z. x = f(z)),
ConditionB(x) <=> (Ex z. x = g('1',z))

rule AttackerProvides:
[In(X)]-->[CaseInput(X)]

rule RuleA: // Case A
[CaseInput(X)]

--[Choice('A',X), _restrict(ConditionA(X))]->
[]

rule RuleB: // Case B
[CaseInput(X)]

--[Choice('B',X), _restrict(ConditionB(X))]->
[]

rule RuleC: // Case C "else"
[CaseInput(X)]

--[Choice('C',X)
, _restrict(not (ConditionA(X) | ConditionB(X)))
]->

5.10 Additional features for specifying properties 77

[]

For this model, Tamarin can prove that the cases are mutually exclusive, using the
following lemma.
lemma RulesPartition:

"All case1 case2 x #i #j.
Choice(case1,x)@i & Choice(case2,x)@j

==> (case1 = case2)"

Part III

The Tamarin System

Chapter 6

A First Glimpse Under the Hood

In this chapter we explain how to start Tamarin, how it works internally, and how to
interpret its output. For Tamarin to work, two tools it depends on must be installed.
One tool needed is Maude [106], which is used for variant computation and unification
modulo associativity-commutativity. The other tool needed is GraphViz [69], which
is used for visualizing graphs.

6.1 Running Tamarin

Tamarin supports two interfaces, each offering users a different way to interact with
the tool.

The first interface is a graphical user interface that is accessed from a web browser.
This is the interface that most users will use most of the time as it supports an
interactive mode of usage where users interact with the prover. For example, they
can have Tamarin display (incomplete) protocol executions as graphs and use these
graphs to visualize attacks or debug models. Moreover, they can try different proof
strategies to extend these graphs and explore different proof alternatives.

The second interface is a simple command-line interface. It can be used to re-run
existing files, to simply check protocol descriptions for syntax errors, or to measure
the time needed for proof construction.

6.1.1 Web interface

To run Tamarin in its interactive mode on the file named theory.spthy, run
the command: tamarin-prover interactive theory.spthy. This will start
Tamarin and invite the user to connect to the web interface.

81

82 6 A First Glimpse Under the Hood

The server is starting up on port 3001.
Browse to http://127.0.0.1:3001 once the server is ready.

Loading the security protocol theories './*.spthy' ...

[Some messages about the different theories being loaded]

Finished loading theories ... server ready at

http://127.0.0.1:3001

After connecting to http://127.0.0.1:3001, the user is presented with Tamarin’s
welcome page (see Figure 6.1).

Fig. 6.1: Tamarin’s welcome page in interactive mode

On the welcome page, Tamarin lists all theory files it has loaded. Note that even
when given just a single file name, in interactive mode Tamarin will automatically
load all files in the same directory. One can also upload additional files using the
form in the “Loading a new Theory” section at the bottom of the page, specifically
the “Choose File” and “Load new theory” buttons.

When clicking on a theory, Tamarin shows the following screen (see Figure 6.2).
On the left, there are links to the Message theory (i.e., the function signature,
equations, and adversary rules), to the Multiset rewrite rules (the protocol
and network rules), and to the Raw and Refined sources (the result of Tamarin’s
precomputations explained in Chapter 8). On the right, Tamarin shows the keyboard
shortcuts that can be used for quick navigation. On the top right, there are links to

http://127.0.0.1:3001

6.1 Running Tamarin 83

navigate back to the main menu, to download the current proof state or the source
file, and to adjust the level of details shown in the graphs.

Fig. 6.2: The theory ISO_IEC loaded in Tamarin

When clicking on Message theory, Tamarin shows the theory’s signature. Namely,
it displays the (built-in or user-defined) functions and equations, as well as the
adversary rules that it deduced from the equations (see 6.3).

The link Multiset rewrite rules can be used to inspect the protocol and network
rules (together with the variants Tamarin computed, see Section 6.7), as well as
protocol restrictions, if they exist (see 6.4).

The next link can be used to inspect the tactics (see Section 16.3 for more information
on tactics). Finally the last two links can be used to inspect the results of Tamarin’s
internal precomputations. We will elaborate on all these options in this chapter.

6.1.2 Command line

To run Tamarin in command-line mode on the file theory.spthy, simply call
Tamarin as follows.

tamarin-prover theory.spthy

84 6 A First Glimpse Under the Hood

Fig. 6.3: The message theory

Tamarin will load the file, check wellformedness, and output a pretty-printed and
cleaned-up version with comments removed, but again without proving any of the
lemmas. To actually prove the lemmas, add the flag --prove.

tamarin-prover theory.spthy --prove

Tamarin will now try to prove all lemmas in the theory using its autoprover.
Afterwards, it will output a summary of all the results. Namely, Tamarin prints a
line for each lemma stating whether the lemma was proven or disproven, and how
many proof steps were required. It also prints the total processing time.
==
summary of summaries:

analyzed: ../tamarin-book/latex/theories/Minimal_Loop_induction.spthy

processing time: 0.22s

Start_before_Loop (all-traces): verified (8 steps)
Satisfied_by_empty_trace_only (exists-trace): verified (3 steps)

==

6.1 Running Tamarin 85

Fig. 6.4: The multiset rewrite rules

Note that Tamarin’s output can be stored in a file and reloaded later. This also
includes the proof(s). When loading a file containing a (partial) proof, Tamarin will
verify all proof steps, and report when it fails to check any of the steps.

To see all options, run tamarin-prover --help. The most important options, and
their corresponding flags, are:

• --prove[=LEMMAPREFIX*|LEMMANAME]: Prove all lemmas that start with
LEMMAPREFIX or the lemma whose name is LEMMANAME.

• --heuristic[=(C|I|O|P|S|c|i|o|p|s)+]: Specify heuristic to use (the de-
fault is ‘s’). See Section 6.6 for more details on heuristics.

• --stop-on-trace[=DFS|BFS|SEQDFS|NONE]: Specify how to search for traces.
The default is DFS (depth-first search). However BFS (breadth-first search) may
help, in particular for exists-trace lemmas, or when one expects to find a
counterexample. SEQDFS forces a sequential search, thus deactivating Tamarin’s
built-in parallelization. NONE tells Tamarin to continue its search even after a
(counter-)example has been found.

86 6 A First Glimpse Under the Hood

• --bound[=INT]: Fix the depth bound for the bounded autoprover in interactive
mode.

• --quit-on-warning: Run in strict mode, which means quitting when any
warning is emitted.

• --auto-sources: Try to auto-generate sources lemmas. See Chapter 8 for more
details.

• --parse-only: Just parse the input file and pretty print it as is. This can be
useful to quickly check if a file parses without performing any further checks, or
to pretty-print an input file.

• --output[=FILE] and --Output[=DIR]: Specify an output file or output direc-
tory.

• --defines[=STRING]: Define flags for Tamarin’s internal preprocessor. See
Section 10.2.3 for more details.

• --diff: Turn on observational equivalence mode, as explained in Chapter 13.
• --oraclename[=FILE]: Set the path to the external oracle heuristic (default

’./oracle’), as explained in Section 16.4.
• --open-chains[=PositiveInteger]: Limit the number of deconstruction

chain constraints to be resolved during precomputations (the default is 10). See
Section 8.1 for more details.

• --saturation[=PositiveInteger]: Limit the number of saturations during
precomputations (the default is 5), as explained in Section 8.1.

• --precompute-only: Only run precomputations and show case numbers, as well
as partial deconstructions. See Section 8.1 for more details.

• --quiet: Do not display oracle or tactic calls. See Section 16.3 and Section 16.4
for an explanation of oracles and tactics.

• --verbose: Display debug information during proof construction.
• --derivcheck-timeout[=INT]: Set the timeout for message derivation checks

in seconds (default 5). The value 0 deactivates checks. See Section 10.1.6 for more
details.

• --debug: Show server debugging output (only in interactive mode).
• --no-logging: Do not show web server logs (only in interactive mode).
• --version: Print version information.

6.2 How Tamarin works

Here we provide an overview of how Tamarin works when proving trace properties.
Equivalence properties are handled differently and are described in Chapter 13.

Tamarin takes as input the protocol model (the rules, equational theories, and
restrictions), as well as the specification of the security properties to prove (the
lemmas). It then tries to construct a proof or a counterexample for each property.

Internally, after parsing the input file, Tamarin first performs some wellformedness
checks to ensure that the input file is syntactically correct, and to detect potential

6.2 How Tamarin works 87

modeling errors. It then converts both the protocol model and the security properties
into constraints. Moreover, it precomputes some larger “composite” constraint
reduction steps that it uses to speed up reasoning later.

To verify whether a protocol satisfies a given security property, Tamarin checks
whether the union of the constraints for the protocol model and the constraints for the
negation of the security property, taken together, have a solution. This proceeds by a
sequence of constraint reduction steps.

Constraint reduction can (and ideally will) lead to a set of constraints where it is
clear whether there is a solution. But this reduction might not terminate. Moreover,
each reduction step can lead to branching in the search space, resulting in multiple
independent sets of constraints that all must be considered, for example due to a case
distinction.

If no constraint reduction rule is applicable and the constraints are consistent, this
means a solution to the constraints exists. In Tamarin, this corresponds to a non-
empty set of traces coherent with the protocol model (as they satisfy the protocol’s
constraints) that violate the security property (as they also satisfy the constraints for
the property’s negation). This solution thus constitutes a set of attacks.

If no solution exists because the constraints are contradictory, then there is no trace
coherent with both the protocol model and the property’s negation. Hence the property
is proven. See Section 1.2 and Figure 1.2 for an illustration of the general approach.

The constraints Tamarin uses represent the minimal requirements for a valid solution,
e.g., the required rule instances and their ordering, and they are of two types: formulas
which must hold (for example, initially the negation of the property to prove, or
restrictions), and graph constraints. Graphs are used abstractly to represent constraints
on (partial) traces. In these graphs, which are called dependency graphs in Tamarin,
each node is an instance of a rule. The edges connect the facts consumed by a rule
to their origins, i.e., the rule instance that created each fact. This also describes a
partial order on the rule instances. Overall, there can be three different types of graph
constraints: node constraints (assigning a rule instance to a node), premise constraints
(requiring the presence of a certain premise), and edge constraints (linking two nodes).

Consider the following toy example, with the full file available at Dependency-
Graph.spthy.

Example 13 (Example from [88]) We have three rules:
rule Init:

[Fr(~a), Fr(~k)]
--[]->
[K(~k), St(~a, ~k), Out(enc(~a,~k))]

rule End:
[St(a, k), In(<a,a>)]
--[Fin(a)]->

88 6 A First Glimpse Under the Hood

[]

rule Reveal:
[K(x)]
--[Rev(x)]->
[Out(x)]

The Init rule creates a fresh message a and a fresh key k, encrypts the message with
the key, and outputs the result. It also stores the key in one fact, and the message and
key in another fact.

The End rule recovers the stored message and key, and matches an input consisting of
a pair containing two copies of the stored message.

The Reveal rule allows the adversary to reveal a stored key.

K(~k)

#i : Reveal[Rev(~k)]

Out(~k)

Fr(~a) Fr(~k)

#vr : Init

K(~k) St(~a, ~k) Out(enc(~a, ~k))

Fig. 6.5: Dependency graph for lemma CannotReveal after second step

Now consider Figure 6.5. This graph consists of five constraints:

• two node constraints, which are the instances of rules Init and Reveal;

• an edge constraint linking the K(~k) conclusion of the Init rule to the K(~k)
premise of the Reveal rule; and

• two premise constraints for the premises Fr(~a) and Fr(~k), which still must be
resolved to have a complete execution.

Note that the dependency graph only represents the minimal requirements for a certain
event (here the Reveal rule instance) to occur, and it actually covers many possible
ground traces. In this example, it simply states that Init must take place before
Reveal (because of the edge). However there can be arbitrary other rule instances
before, between, or after these two rule instances. Moreover, the variables must be
instantiated with ground values, etc. Section 6.3 explains this in more detail.

To illustrate how Tamarin’s constraint solving works, consider the following lemma.

6.2 How Tamarin works 89

lemma CannotReveal:
"not(Ex y #i. Rev(y)@#i)"

In a first step, Tamarin creates an empty constraint system and adds the formula’s
negation to it. Thus we obtain a constraint system with no graph constraints, but with
the formula Ex y #i. Rev(y)@#i.

There is only one rule in the model that has a Rev fact as an action: the Reveal
rule. Tamarin can therefore refine the model by converting the formula into a node
constraint with a rule instance of the Reveal rule. Moreover, as the variables are
existentially quantified, Tamarin can treat them as free variables. Tamarin also adds
a new premise constraint: the origin of the premise K(~k) must be found. The current
state of the constraint system is shown in Figure 6.6.

K(y)

#i : Reveal[Rev(y)]

Out(y)

Fig. 6.6: Constraint system for lemma CannotReveal after first step

Again, as there is only one rule producing the K fact, namely the Init rule, Tamarin
can refine the system by adding an instance of the Init rule as a node constraint
(with the same ~k) and an edge constraint linking the Init rule’s conclusion with
the Reveal rule’s premise. Moreover, there are two premise constraints: Fr(~a) and
Fr(~k). The system’s state is shown in Figure 6.5.

K(~k)

#i : Reveal[Rev(~k)]

Out(~k)

#vf : Fresh

Fr(~a)

Fr(~a) Fr(~k)

#vr : Init

K(~k) St(~a, ~k) Out(enc(~a, ~k))

#vf.1 : Fresh

Fr(~k)

Fig. 6.7: Final solved constraint system

90 6 A First Glimpse Under the Hood

Tamarin can then solve the remaining two premise constraints using instances of the
fresh rule, which again is the only rule producing Fr facts. We thereby end up with
the solved system shown in Figure 6.7.1

Each of these steps actually corresponds to the application of one constraint reduction
rule. Tamarin has numerous such rules, which refine the formulas or graph constraints.
Each constraint reduction rule is guaranteed to preserve the set of solutions, which
ensures the correctness of Tamarin’s reasoning. As previously observed, a constraint
reduction step can result in multiple cases, for example when performing a case
distinction on the possible rules that produce a specific fact. In general, the constraint
reduction rules transform a constraint system into a set of constraint systems.

While solving constraints, Tamarin also takes the equational theory into account. In
this example, we have the following functions and equation:
functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

This means that when Tamarin looks for a term t, it must actually consider two
cases: t or dec(enc(t, k), k), for some k. Note that, to speed up reasoning,
Tamarin computes the normal forms of terms. This way it does not need to consider
all possibilities at each step. See Section 6.7 for a more detailed explanation of this
approach.

As previously mentioned, Tamarin precomputes sources for all facts used in the
protocol model. Given a fact, each source corresponds to a unique way of producing
that fact by performing multiple constraint solving steps in one go. In the above
example, Tamarin will precompute one source for the K fact, which consists of
an instance of the Init rule plus two instances of the Fresh rule (see Figure 6.8).
The same dependency graph is actually also the only source for the St fact (see
Figure 6.9).

6.3 How dependency graphs relate to traces

As explained above, during proof construction, Tamarin incrementally constructs
dependency graphs as part of the constraint system.

Consider the example from Section 6.2, and the dependency graph shown in Figure 6.5.
This dependency graph constrains the possible protocol traces to those that contain
at least one instance of the rule Init at timepoint #vr and an instance of the rule
Reveal at some later timepoint #i. At this point of the constraint solving, since not
all dependencies have been solved yet (in particular the premises of the rule Init), it
might still be the case that the protocol has no such traces, in which case there is no
solution.
1 To simplify the graph visualization and speed up reasoning, fresh premises are automatically
resolved and the corresponding rule instances are by default not shown in the graph visualization.

6.3 How dependency graphs relate to traces 91

Fr(~a.3) Fr(~k.3)

#vr.2 : Init

K(~k.3) St(~a.3, ~k.3) Out(enc(~a.3, ~k.3))

(#i, 0)

#vf.4 : Fresh

Fr(~a.3)

#vf.5 : Fresh

Fr(~k.3)

Fig. 6.8: Source of the fact K

Fr(~a.4) Fr(~k.4)

#vr.3 : Init

K(~k.4) St(~a.4, ~k.4) Out(enc(~a.4, ~k.4))

(#i, 0)

#vf.5 : Fresh

Fr(~a.4)

#vf.6 : Fresh

Fr(~k.4)

Fig. 6.9: Source of the fact St

Solved constraint systems: Once Tamarin can determine that there exists at least
one trace that instantiates the dependency graph and meets all its constraints, the
constraint system is considered to be “SOLVED” and a trace can be constructed.

For example, consider the graph in Figure 6.7 from the same example. This constraint
system is solved and hence we can construct a trace that satisfies it. We can do this as
follows.

1. Pick any linearization of the partially ordered rule instances in the dependency
graph.

2. Instantiate each variable in the constraint system with a ground term that does
not already occur in the constraint system in a sort-respecting way. Namely, for
each fresh variable, the ground term must be chosen from the set of fresh values;
for each public variable, the ground term must be chosen from the set of public
constants.

92 6 A First Glimpse Under the Hood

For example, one possible linearization of the above constraint system is:

1. Fresh @ #vf

2. Fresh @ #vf.1

3. Init @ #vr

4. Reveal @ #i

Another possible linearization is:

1. Fresh @ #vf.1

2. Fresh @ #vf

3. Init @ #vr

4. Reveal @ #i

The actual trace only contains the action facts of the rules (hence the instances of
the Fresh and Init rules become “invisible” here), in the linearized order, where
additionally all variables have been replaced by ground terms. A possible trace
corresponding to the above linearization(s) is thus

[Rev(kA) @ 4] ,

where kA is a fresh value and 4 is a timepoint.

Note that for a solved constraint system, there are usually infinitely many traces that
satisfy it. The traces are determined by each linearization of the partial order, and
each possible variable instantiation. Moreover, the dependency graph only indicates
which actions must necessarily be in the trace, but it does not exclude the occurrence
of other actions.

For the above example, the following traces are also solutions to the same constraint
system and dependency graph:

• [Rev(kB) @ 4], which is a trace with a different variable instantiation.

• [Rev(kA) @ 4, Rev(kB) @ 8], which is a trace with the graph duplicated, and
with a different variable instantiation.

• [Rev(kA) @ 4, Fin(kA) @ 10], or even
[Rev(kA) @ 4, Rev(kB) @ 8, Fin(kA) @ 17],
which are traces with other rule instances added, possibly in an interleaved fashion.

6.4 The constraint-solving algorithm

As previously explained, Tamarin uses constraint solving to prove or disprove
lemmas, where each constraint reduction step generates one or more new constraint

6.4 The constraint-solving algorithm 93

lemma Client_auth_injective:

 all-traces

 "∀ S k #i.

 (SessKeyC(S, k) @ #i) ⇒

 (∃ #a.

 (AnswerRequest(S, k) @ #a) ∧

 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"

simplify

solve(Client_1(S, k) ▶₀ #i)

 case Client_1

 solve(!KU(h(~k)) @ #vk)

 case Serv_1

 solve(!KU(aenc(<'1', ~k>, pk(~ltkS))) @ #vk.1)

 case Client_1

 solve((#i < #j) ∥ (#j < #i))

 case case_1

 solve(Client_1($S, ~k) ▶₀ #j)

 case Client_1

 by contradiction /* cyclic */

 qed

 next

 case case_2

 solve(Client_1($S, ~k) ▶₀ #j)

 case Client_1

 by contradiction /* cyclic */

 qed

 qed

 next

 case c_aenc

 by sorry

 qed

 next

 case c_h

 by sorry

 qed

qed

Fig. 6.10: Partial proof tree of lemma Client_auth_injective

systems. This leads to a proof tree, which is visible in the GUI, or output when
Tamarin is run on the command line.

Figure 6.10 presents a Tamarin proof tree, visible on the left-hand side in the GUI.
All blue lines correspond to an application of a constraint reduction rule, with the
resulting set of refined constraint systems listed below. There can be any number of
these “cases” (including zero), which again must be resolved, and so on. The qed
symbol marks the end of a list of cases.

6.4.1 Proof methods

Tamarin uses different types of proof methods to solve different types of constraints:

• The proof method for premise constraints is typically used to
find the origin of facts from the protocol rules. It is shown as
solve(Fact(terms) ▶ #timepoint) in the proof tree. For example, the

94 6 A First Glimpse Under the Hood

second proof step in Figure 6.10, solve(Client_1(S, k) ▶ #i) solves
the premise Client_1(S, k) in the rule instance #i.

• The proof method for action constraints is used to solve formula con-
straints, for example, when a formula requires a certain action to be
present in the trace, or to solve intruder deduction constraints as de-
scribed in Section 6.8. The application of this proof method is shown as
solve(Fact(terms) @ #timepoint) in the proof tree. For example, the
third proof step in Figure 6.10, solve(!KU(h(~k)) @ #vk) solves the
intruder deduction constraint !KU(h(~k)) in the rule instance #vk. In essence,
it computes whether (and if so, how) the intruder can obtain h(~k).

• The proof method for disjunctions turns a disjunction inside a formula into a case
distinction at the level of the constraint system. The application of this proof method
is shown as solve(f1 ∥ f2) in the proof tree, where f1 and f2 are formulas.
For example, the fifth goal in Figure 6.10, solve((#i < #j) ∥ (#j < #i)),
is a disjunction goal.

• Contradiction is a proof method used when Tamarin can show that the current
constraint system is contradictory. Examples of this are dependency graphs with a
circular dependency, or a formula evaluating to false given the current dependency
graph. Contradictions are displayed as contradiction in the proof tree, together
with a brief comment describing the type of contradiction (e.g., /* cyclic */ or
/* from formulas */). As a contradictory constraint system has no solutions,
Tamarin stops solving further constraints for these systems, effectively “closing”
a branch of the proof tree. In Figure 6.10, there are two contradictions.

• Simplify is a proof method used to simplify a formula from the formula constraints
and also to translate it into other constraints. Typically this is the first step in the
proof tree (as in Figure 6.10), and it translates the negation of the lemma into a set
of graph constraints and potentially other formulas. This is shown as simplify in
the proof tree.

• The induction proof method allows Tamarin to prove a lemma using induction on
the length of the trace. It is shown as induction and is only available as the first
proof step. For more details, see Section 9.1.

• The proof method for deconstruction chain constraints is used to com-
pute whether the adversary can extract a given term from some mes-
sage. This proof method’s application is shown in the proof tree as
solve((#timepoint1, i1) ~~> (#timepoint2, i2)), where i1 and
i2 are integers. See Section 6.8 and Chapter 8 for more details.

• Applications of the proof method for equation split constraints are written in the
proof tree as solve(splitEqs(i)), where i is an integer. This proof method
is used to perform a case split on different possible substitutions, for example
when considering rule variants. See Section 6.7 for details.

6.4 The constraint-solving algorithm 95

• sorry is a special proof method that does not prove anything. It simply serves as
a placeholder in the proof tree for a proof that still needs to be completed.

• SOLVED in the proof tree means that Tamarin has reached a solved constraint
system, where no proof methods are applicable. The dependency graph then
corresponds to a protocol execution that respects all constraints. Typically, this
will be a counterexample constituting an attack on the security property being
reasoned about. The exception is exists-trace lemmas, where this execution
corresponds to a proof that the trace exists.

6.4.2 An example

Example 14 (Simple Challenge Response Protocol)

Consider again the following example from Chapter 4, where the full file is available
at SimpleChallengeResponse.spthy:
rule Register_pk:

[Fr(~ltk)]
-->
[!Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk))]

rule Client_1:
[Fr(~k), !Pk($S, pkS)]

-->
[Client_1($S, ~k), Out(aenc{'1', ~k}pkS)]

rule Client_2:
[Client_1(S, k), In(h(k))]

--[SessKeyC(S, k)]->
[]

rule Serv_1:
[!Ltk($S, ~ltkS), In(aenc{'1', k}pk(~ltkS))]

--[AnswerRequest($S, k)
]->
[Out(h(k))]

Consider the following lemma specifying injective agreement:
lemma Client_auth_injective:

" /* for all session keys 'k' setup by clients with a server 'S' */
(All S k #i. SessKeyC(S, k) @ #i

==>
/* there is a server that answered the request */

(Ex #a. AnswerRequest(S, k) @ a
/* and there is no other client that had the same request. */
& (All #j. SessKeyC(S, k) @ #j ==> #i = #j)

)
) "

96 6 A First Glimpse Under the Hood

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
by sorry

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
by sorry

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

end

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (l

1. simplify

2. induction

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

last: none

formulas:
 ∃ S k #i.
 (SessKeyC(S, k) @ #i)
 ∧
 ∀ #a.
 (AnswerRequest(S, k) @ #a)
 ⇒
 ∃ #j. (SessKeyC(S, k) @ #j) ∧ ¬(#i = #j)

subterms:

equations:
 subst:
 conj:

lemmas:

allowed cases: refined

solved formulas:

unsolved constraints:

Lemma: Client_auth_injective

Running TAMARIN 1.10.0 Index Download Actions » Options »

Fig. 6.11: Initial proof state

To illustrate how Tamarin reasons, consider the first steps in the proof tree given
in Figure 6.10. Initially, Tamarin shows the constraint system given in Figure 6.11.
There are two applicable proof methods: simplify and induction. Tamarin also
shows six variants of the “autoprover”, a normal version a that tries to automatically
prove the current lemma, and a bounded version b that stops at a given proof depth,
thereby ensuring termination. The third version A (for all solutions) tries to fully
explore the reachable constraint systems from the current state and continues working
even after a counterexample has been found, at which point the first two versions
would have stopped. Analogously, B applies a bounded “autoprover”, but continues
after a counterexample has been found. Finally there is a version s (and S, analogous
to A and B) that tries to prove all lemmas at the same time. These “autoprovers” always
apply the first possible proof method. Which proof method is ranked first depends on
the heuristic used, see Section 6.6.

Below the applicable proof methods, Tamarin shows the current state of the constraint
system. Here, the system is initialized only with one formula: the negation of the
property to be proven. The lemma states that for all SessKeyC(S, k) actions (i.e.,
session keys ’k’ set up by clients with a server ’S’), there is an AnswerRequest(S, k)
action (i.e., a server that answered the request), and all other SessKeyC(S, k) actions
are actually identical to the initial one. Hence, the negation states that there exists a
SessKeyC(S, k) action and for all AnswerRequest(S, k) actions there exists a
different SessKeyC(S, k) action.

6.4 The constraint-solving algorithm 97

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
simplify
by sorry

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
by sorry

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

end

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (l

1. solve(Client_1(S, k) ▶₀ #i) // nr. 2 (from rule Client_2)

2. solve(!KU(h(k)) @ #vk) // nr. 3 (probably constructible)

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

Client_1(S, k) In(h(k))

#i : Client_2[SessKeyC(S, k)]

!KU(h(k))

#vf : isend[K(h(k))]

In(h(k))

!KU(h(k)) @ #vk

last: none

formulas:
 ∀ #a.
 (AnswerRequest(S, k) @ #a)
 ⇒
 ∃ #j. (SessKeyC(S, k) @ #j) ∧ ¬(#i = #j)

subterms:

equations:
 subst:

conj:

Visualization display

Running TAMARIN 1.10.0 Index Download Actions » Options »

Fig. 6.12: Proof state after the first step

After applying simplify, one obtains the state shown in Figure 6.12. The proof
tree on the left now contains the simplify step, and the constraint system on the
right-hand side has been refined:

• A partial dependency graph is shown. It contains an instance of the Client_2
rule, since this is the only rule containing a SessKeyC(S, k) action.

• The formula has been simplified. Given that the graph already contains
a SessKeyC(S, k) action, it now only remains to show that for all
AnswerRequest(S, k) there exists a different SessKeyC(S, k) action, as this
would constitute a valid counterexample to the lemma.

• Tamarin also lists the solved formulas from the previous steps as well as all
unsolved and solved constraints (see Figure 6.13). In this case, the solved constraint
corresponds to the SessKeyC(S, k) action constraint, which was solved using
the instance of the Client_2 rule in the dependency graph. The two unsolved
constraints are the two open premises from the graph: the Client_1(S, k) fact
and the input of h(k).

After applying solve(Client_1(S, k) ▶ #i), one obtains the state shown
in Figure 6.14. Here Tamarin has solved the Client_1(S, k) premise constraint
by adding an instance of the Client_1 rule (thus the name of the case in the proof
tree) to the dependency graph. The formulas are unmodified, and the solved constraints
are updated. Note that Tamarin directly solved the !Pk($S, pk(~ltk)) premise

98 6 A First Glimpse Under the Hood

formulas:

 ∀ #a.

 (AnswerRequest(S, k) @ #a)

 ⇒

 ∃ #j. (SessKeyC(S, k) @ #j) ∧ ¬(#i = #j)

equations:

 subst:

 conj:

lemmas:

allowed cases: refined

solved formulas:

 ∃ S k #i.

 (SessKeyC(S, k) @ #i)

 ∧

 ∀ #a.

 (AnswerRequest(S, k) @ #a)

 ⇒

 ∃ #j. (SessKeyC(S, k) @ #j) ∧ ¬(#i = #j)

unsolved goals:

 !KU(h(k)) @ #vk // nr: 3" (probably constructible)"

 Client_1(S, k

) ▶₀ #i // nr: 2 (from rule Client_2)" (useful2)"

solved goals:

 SessKeyC(S, k

) @ #i // nr: 0 (from rule Client_2)" (useful2)"

Fig. 6.13: Details of the constraint system at Step 2

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
simplify
solve(Client_1(S, k) ▶₀ #i)
 case Client_1
 by sorry
qed

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
by sorry

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

end

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (loop b

1. solve(!KU(h(~k)) @ #vk) // nr. 3

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

Client_1($S, ~k) In(h(~k))

#i : Client_2[SessKeyC($S, ~k)]

#vf : isend

Fr(~k) !Pk($S, pk(~ltk))

#vr : Client_1

Client_1($S, ~k) Out(aenc(<'1', ~k>, pk(~ltk)))

Fr(~ltk)

#vr.1 : Register_pk

!Ltk($S, ~ltk) !Pk($S, pk(~ltk)) Out(pk(~ltk))

!KU(h(~k)) @ #vk

last: none

formulas:
 ∀ #a.
 (AnswerRequest($S, ~k) @ #a)
 ⇒
 ∃ #j. (SessKeyC($S, ~k) @ #j) ∧ ¬(#i = #j)

subterms:

Case: Client_1

Running TAMARIN 1.10.0 Index Download Actions » Options »

Fig. 6.14: Proof state after the second step

6.4 The constraint-solving algorithm 99

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
simplify
solve(Client_1(S, k) ▶₀ #i)
 case Client_1
 solve(!KU(h(~k)) @ #vk)
 case Serv_1
 by sorry
 next
 case c_h
 by sorry
 qed
qed

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
by sorry

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

end

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (loop breakers delayed)

1. solve(!KU(aenc(<'1', ~k>, pk(~ltkS))
) @ #vk.1) // nr. 7

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

Client_1($S, ~k) In(h(~k))

#i : Client_2[SessKeyC($S, ~k)]

#vf : isend

#vk : coerce[!KU(h(~k))]

#vl : irecv

Fr(~k) !Pk($S, pk(~ltk))

#vr : Client_1

Client_1($S, ~k) Out(aenc(<'1', ~k>, pk(~ltk)))

#vf.3 : isend

Fr(~ltk)

#vr.1 : Register_pk

!Ltk($S, ~ltk) !Pk($S, pk(~ltk)) Out(pk(~ltk))

!Ltk($S.1, ~ltkS) In(aenc(<'1', ~k>, pk(~ltkS)))

#vr.2 : Serv_1[AnswerRequest($S.1, ~k)]

Out(h(~k))

Fr(~ltkS)

#vr.3 : Register_pk

!Ltk($S.1, ~ltkS) !Pk($S.1, pk(~ltkS)) Out(pk(~ltkS))

!KU(aenc(<'1', ~k>, pk(~ltkS))) @ #vk.1

last: none

formulas:
 ∀ #a.
 (AnswerRequest($S, ~k) @ #a)
 ⇒
 ∃ #j. (SessKeyC($S, ~k) @ #j) ∧ ¬(#i = #j)

subterms:

Visualization display

Running TAMARIN 1.10.0 Index Download Actions » Options »

Fig. 6.15: Proof state after the third step, first case

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
simplify
solve(Client_1(S, k) ▶₀ #i)
 case Client_1
 solve(!KU(h(~k)) @ #vk)
 case Serv_1
 by sorry
 next
 case c_h
 by sorry
 qed
qed

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
by sorry

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (loop b

1. solve(!KU(~k) @ #vk.1) // nr. 7

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

Client_1($S, ~k) In(h(~k))

#i : Client_2[SessKeyC($S, ~k)]

#vf : isend

#vk : c_h[!KU(h(~k))]

Fr(~k) !Pk($S, pk(~ltk))

#vr : Client_1

Client_1($S, ~k) Out(aenc(<'1', ~k>, pk(~ltk)))

Fr(~ltk)

#vr.1 : Register_pk

!Ltk($S, ~ltk) !Pk($S, pk(~ltk)) Out(pk(~ltk))

!KU(~k) @ #vk.1

last: none

formulas:
 ∀ #a.
 (AnswerRequest($S, ~k) @ #a)
 ⇒

#j (S K C($S k) @ #j) (#i #j)

Case: c_h

Running TAMARIN 1.10.0 Index Download Actions » Options »

Fig. 6.16: Proof state after the third step, second case

of the added Client_1 rule instance; this is due to Tamarin’s precomputations as
explained in Chapter 8.

100 6 A First Glimpse Under the Hood

The only remaining available proof method is solve(!KU(h(~k)) @ #vk).
When applying this method, one obtains the state shown in Figure 6.15. There are now
two cases, displayed in the proof tree on the left: either the message corresponds to
the output of a Serv_1 rule instance shown on the right, or the adversary constructed
the message by applying the hash function h (case c_h) to ~k (as in Figure 6.16).
Tamarin then must proceed in both branches of the proof tree to check whether
either of them leads to a solved constraint system.

6.4.3 Proof method annotations

Applicable Proof Methods: Goals sorted according to the

'smart' heuristic (loop breakers delayed)

1. solve(Client_1(S, k) ▶₀ #i) // nr. 2 (from rule Client_2)

2. solve(!KU(h(k)) @ #vk) // nr. 3 (probably constructible)

a. autoprove (A. for all solutions)

b. autoprove (B. for all solutions) with proof-depth bound 5

s. autoprove (S. for all solutions) for all lemmas

Fig. 6.17: Example list of available proof methods

When Tamarin lists the currently available proof methods in its graphical user
interface (see, e.g., Figure 6.17), the methods may also have annotations:

• An action constraint is currently deducible either when it is composed only
from public constants and does not contain private function symbols, or when it
can be extracted from a sent message using just unpairing or inversion.

• An action constraint is probably constructible when it concerns a message
that does not contain a fresh name or a fresh variable, and therefore can likely be
constructed by the adversary.

• An action constraint is useful when it appears in specific ways in the formulas of
the constraint system.

• To avoid loops when solving premise constraints, Tamarin computes a set of
premises, called loop breakers, that are sufficient to break all possible loops
(similar to a vertex feedback set used in graph theory). The idea is to consider
a graph containing a node for each rule, and an edge between rule 1 and rule 2
if 2 has a premise fact that is part of the conclusion facts of rule 1. This graph
over-approximates possible sequences of rules and, in particular, any potential
looping sequence of rule instances will show up as a cycle in this graph. The
goal is then to remove a minimal set of premises (the loop breakers) so that
the remaining graph has no cycles. Note that this set is not, in general, unique,

6.5 Dependency graph visualizations 101

and Tamarin might not compute the “optimal” solution. One can influence this
computation using the [no_precomp] fact annotation, see Section 8.1.

All these annotations are used by Tamarin to prioritize the available proof methods:
a constraint that is currently deducible or probably constructible has a low priority.
The same holds for loop breakers.

6.5 Dependency graph visualizations

Client_1($S, ~k) In(h(~k))

#i : Client_2[SessKeyC($S, ~k)]

#vf : isend

#vk : c_h[!KU(h(~k))]

Fr(~k) !Pk($S, pk(~ltk))

#vr : Client_1

Client_1($S, ~k) Out(aenc(<'1', ~k>, pk(~ltk)))

Fr(~ltk)

#vr.1 : Register_pk

!Ltk($S, ~ltk) !Pk($S, pk(~ltk)) Out(pk(~ltk))

!KU(~k) @ #vk.1

Fig. 6.18: A dependency graph with the default level of detail

As shown above, Tamarin uses dependency graphs to abstractly represent protocol
traces. The different symbols and colors in the graph have specific meanings. Consider,
for example Figure 6.18. Their meanings are:

• Protocol rule instances are represented as rectangular boxes with a green back-
ground, where different shades of green distinguish different rules. The top part
contains the premise facts and the bottom part the conclusion facts. In the middle,
Tamarin shows the timepoint, the rule’s name, and the action facts.

In practice, the different shades of green can be quite similar. If desired, a rule can
be annotated with a custom color (in RGB notation) to help reading the graph, as
in the following example where the rule test will be shown in a red box:
rule test [color=FF0000]
...

• Round white boxes with a black border represent the actions taken by the adversary
or the network.

102 6 A First Glimpse Under the Hood

• Round white boxes with a gray border represent open action constraints concerning
the intruder deduction.

• Black or gray solid arrows show the origins of In and Fr facts as well as protocol
facts (i.e., facts introduced by the users in the rules modeling the protocol, in
contrast to built-in facts such as K, KU, KD, Out etc.). Grey is used for persistent
(reusable) facts, and black for linear (consumed) facts (in particular also for Fr
and In facts).

• Dashed arrows link network and adversary actions. They can also represent
additional “precedence” constraints, even on protocol rule instances. For example,
a restriction may require that a certain rule instance happens before another one.
The color(s) of the arrow indicate(s) the reason for precedence constraint:

– Black represents an ordering constraint implied by formulas, for example by a
restriction or the current lemma.

– Dark blue represents an ordering constraint implied by fresh values. As fresh
values are unique, all rule instances using a fresh value must appear after the
rule instance that created that fresh value.

– Red represents steps in which the adversary composes terms to create other
terms.

– Dark orange represents a constraint implied by Tamarin’s normal form
conditions, see Section 6.8.3.

– Purple represents an ordering constraint originating from an injective fact
instance, see Section 10.1.7.

Note that an arrow can have multiple colors if there are multiple reasons for its
existence. For example, an arrow can be black and blue if it is implied by formulas
and a fresh value.

• Orange and green arrows, which are not shown in this example, help visualize the
deconstruction part of the adversary deduction. Orange arrows represent solved
deconstruction chains and green arrows represent open (unsolved) deconstruction
chains. Deconstruction chains are explained in Section 6.8.

The level of details shown in the graphs can be configured in the GUI. By default,
network and intruder actions are compressed into round white boxes. By clicking on
“Options” and “Graph simplification off”, one can display these parts of the graph
in full detail (see Figure 6.19 for an example). In particular, Tamarin then shows
the instances of the Fresh rule in purple, which are otherwise hidden by default, as
well as the precise rule instances for the network and adversary rules in various tones
of blue. Round white boxes with a gray border can still appear and represent open
constraints.

Three other graph simplification levels, L1–L3, are available,

• L1: the fresh and adversary rules are hidden, but all arrows are shown;

6.5 Dependency graph visualizations 103

Client_1($S, ~k) In(h(~k))

#i : Client_2[SessKeyC($S, ~k)]

!KU(h(~k))

#vf : isend[K(h(~k))]

In(h(~k))

!KU(~k)

#vk : c_h[!KU(h(~k))]

!KU(h(~k))

Fr(~k) !Pk($S, pk(~ltk))

#vr : Client_1

Client_1($S, ~k) Out(aenc(<'1', ~k>, pk(~ltk)))

#vf.1 : Fresh

Fr(~k)

Fr(~ltk)

#vr.1 : Register_pk

!Ltk($S, ~ltk) !Pk($S, pk(~ltk)) Out(pk(~ltk))

#vf.2 : Fresh

Fr(~ltk)

!KU(~k) @ #vk.1

Fig. 6.19: Graph simplification turned off

• L2 (default): same as L1, but Tamarin only shows a transitive reduction of the
arrows, i.e., arrows implied by other arrows are hidden (except for black ones); and

• L3: same as L2, but Tamarin only shows a full transitive reduction of the arrows
(including the black arrows).

When placing the different nodes of the graph, GraphViz (the graph rendering tool
used by Tamarin) tries to minimize the number of edge crossings. This can result in
situations where rules of different agents are “mixed”, or two rules belonging to the
same agent and the same session are placed far away, with other rules “in between”.
To avoid this and improve the readability of the graphs, Tamarin can cluster rule
instances based on rule annotations or their names.

Rules can be annotated using role names as follows:
rule test[role="Initiator"]:

[...]
-->
[...]

Tamarin will then group together all rules that are annotated with the same role name.
These grouped rule instances are split into different sessions using the following

104 6 A First Glimpse Under the Hood

heuristic: all rules instances connected using linear facts are considered to be part of
the same session.

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
simplify
solve(Client_1(S, k) ▶₀ #i)
 case Client_1
 solve(!KU(h(~k)) @ #vk)
 case Serv_1
 by sorry
 next
 case c_h
 by sorry
 qed
qed

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
by sorry

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (loop b

1. solve(!KU(~k) @ #vk.1) // nr. 7

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

Client_Session_1

#vf : isend

Client_1($S, ~k) In(h(~k))

#i : Client_2[SessKeyC($S, ~k)]

#vk : c_h[!KU(h(~k))]

Fr(~ltk)

#vr.1 : Register_pk

!Ltk($S, ~ltk) !Pk($S, pk(~ltk)) Out(pk(~ltk))

Fr(~k) !Pk($S, pk(~ltk))

#vr : Client_1

Client_1($S, ~k) Out(aenc(<'1', ~k>, pk(~ltk)))

!KU(~k) @ #vk.1

last: none

Case: c_h

Running TAMARIN 1.10.0 Index Download Actions » Options »

Abbreviate terms

Clustering by role

Show annotation auto-sources

Graph simplification off

Graph simplification L1

Graph simplification L2

Graph simplification L3

Fig. 6.20: The “Clustering by role” option

Instead of explicitly defining the roles, Tamarin can also cluster rules based on their
names. To enable this option, one must enable “Clustering by role” in the options
menu at the top right corner in Tamarin GUI (see Figure 6.20). When enabled,
Tamarin will group rules based on their names, i.e., all rules whose names start with
the same prefix and end with an underscore followed by different number, will be
considered as part of the same role. For example, in Example 14, the rules Client_1
and Client_2 will be grouped together into the cluster Client (see Figure 6.21).

Note that the role names and the clustering has no effect on the semantics of the rules;
they only influence the graph visualization.

6.6 Heuristics

As we have seen, at any given proof step there may be multiple proof methods
available. To decide which proof method to apply first, Tamarin uses heuristics.

Heuristics play an important role in whether Tamarin terminates and how quickly it
terminates, i.e., its efficiency. For many examples, choosing the “right” proof method
to apply first allows Tamarin to terminate quickly, and a different choice may lead to
a much larger proof or even non-termination. However, the heuristics applied have no
influence on the result’s correctness: as the constraint reduction steps are sound and
complete by construction, any conclusion obtained by Tamarin is always correct, no
matter which proof methods were used to arrive there and the order in which they
were applied.

The heuristic(s) that Tamarin uses are specified in three ways:

1. using a command-line flag --heuristic=...;

6.6 Heuristics 105

Client_Session_1

#vf : isend

Client_1($S, ~k) In(h(~k))

#i : Client_2[SessKeyC($S, ~k)]

#vk : c_h[!KU(h(~k))]

Fr(~ltk)

#vr.1 : Register_pk

!Ltk($S, ~ltk) !Pk($S, pk(~ltk)) Out(pk(~ltk))

Fr(~k) !Pk($S, pk(~ltk))

#vr : Client_1

Client_1($S, ~k) Out(aenc(<'1', ~k>, pk(~ltk)))

!KU(~k) @ #vk.1

Fig. 6.21: The Client cluster. Additional session will be shown in different boxes.

2. using the heuristic:... instruction in an input file; and

3. using a lemma annotation.

Lemma annotations are specified after the lemma name in square brackets, for
example, lemma Example [heuristic=...]. They can be used to specify how
the lemma is to be proven (e.g., by defining the heuristic), or used within the file (e.g.,
if it should be reused to prove a subsequent lemma, etc.).

The priority of the different heuristic choices is as follows:

1. The command-line option (--heuristic=...) has the highest priority, followed
by

2. the lemma attribute (heuristic=...), and

3. the global choice per input file (heuristic:...).

4. If none of the above is given, Tamarin uses the default heuristic (s).

In the GUI, Tamarin shows at each proof step which heuristic it currently applies.
See, for example, Figure 6.17: “Proof methods sorted according to the
‘smart’ heuristic”.

106 6 A First Glimpse Under the Hood

There are various built-in heuristics:

• The default heuristic is called the ‘smart’ heuristic and can be called using the s flag
(i.e., heuristic: s for example). As the name suggests, this heuristic works well
on many examples. It prioritizes chain constraints, disjunctions, premise constraints,
action constraints, and adversary knowledge that includes private or fresh terms, in
this order. Probably constructible and currently deducible constraints
are assigned lower priority. Loop breakers are also delayed. There is a variant
of this heuristic, which can be called using the S flag, that does not delay loop
breakers.

• The ‘consecutive’ or ‘conservative’ heuristic, called using the c flag, solves
constraints in the order they are generated. This ensures that no constraint is delayed
indefinitely. However, it is often inefficient because unimportant constraints are
solved before the more interesting constraints are treated. Loop breakers are
still delayed and there is again a variant (C) that does not delay them.

• There is a special heuristic tailored to stateful protocols with injective facts (see
Section 10.1.7 for more details), called using the i flag. In a nutshell, the heuristic
applies the same priorities as the smart heuristic, but instead of a strict priority
hierarchy, the fact, action, and knowledge constraints are considered to have equal
priority and are solved in the order of their age, with oldest solved first.

The rationale behind this heuristic is as follows. For stateful protocols with an
unbounded number of runs, solving a fact constraint may create a new fact
constraint for the previous protocol run. It then makes sense to prioritize existing
fact, action, and knowledge constraints before solving the fact constraints of that
previous run, as solving those constraints will likely create other earlier fact
constraints and so on, resulting in a loop. Again, there is a variant (I) that does
not delay loop breakers.

• Tactics (see Section 16.3) can be used to specify custom heuristics inside the
Tamarin input file based on a small tactic language. They can be used to tailor a
heuristic to a protocol when the standard heuristics are too inefficient or fail.

• The oracle rankings (o and O) allow the user to provide an arbitrary external
program that ranks the available proof methods, which is used to modify the
underlying heuristic. These rankings use the consecutive ranking C as starting
point of the external program when o is selected (respectively they use the smart
heuristic s as starting point when O is selected) heuristic as baseline, which is
modified by the external program. See Section 16.4 for more details on how oracles
work.

It is possible to provide several heuristic flags. In that case, they are employed in a
round-robin fashion depending on the proof-depth. For example, calling Tamarin
with the flag --heuristic=Css tells the tool to use the ‘Consecutive’ heuristic first,
followed by the smart heuristic twice, followed by the ‘Consecutive’ heuristic, and so
on.

6.7 Handling equations 107

6.7 Handling equations

As explained in the previous chapters, Tamarin uses terms to represent messages,
and equations to model the algebraic properties of the (cryptographic) functions used
to compute messages. For example, the following equation can be used to model
symmetric encryption:
equations: sdec(senc(m, k),k) = m

For Tamarin, given a set of equations, all reasoning is modulo the set of equations
(also called equational theory). For example, when checking whether a given value
can be input to a rule, Tamarin must check whether the value matches the input,
modulo the equational theory.

Reasoning modulo the equational theory can be computationally expensive. Hence,
Tamarin uses a number of techniques and restrictions to handle equations efficiently.
We explain these in the remainder of this section.

Orienting equations

The first technique is to orient equations from the left side of the equation
to the right side of the equation. This turns the equations into rewrite rules,
where terms can be rewritten using the oriented equations. For example, the term
sdec(senc(h(n), k), k) can be rewritten to h(n) when orienting the equation
just defined. Without this orientation, one could also apply the equation in the other
direction, for example, rewriting h(n) to sdec(senc(h(n), k), k), which is
undesired.

Convergent equations

Tamarin only works with convergent equations. A rewrite system is called convergent
if it is both terminating and confluent. Terminating means that for any term there is
only a finite number of possible rewrite steps that can be applied. Confluent means
that independently of the order in which one applies the rewrite steps, one always
obtains the same term at the end. In the case of a convergent rewrite system, all terms
have a unique normal form, which can be computed by simply applying all rewrite
rules until none of them are applicable any more. We say that a term is normalized if
it is in normal form. Moreover, two terms are equal modulo the equational theory if
and only if their normal forms are syntactically equal.

To exemplify these ideas, we present two small toy equational theories that violate
termination and confluence, respectively. An equational theory violating termination
is one with a single constant a and the equation a=a. From the term a, arbitrarily
many rewrite steps are possible; thus rewriting does not terminate. For confluence,
consider a simple example with the three constants, a, b, and c, and the two equations

108 6 A First Glimpse Under the Hood

a=b and a=c. Starting from a, we can reach both b and c, neither of which can be
further rewritten. But the resulting terms are different. For more involved examples
and more details on the theory, we refer the reader to [6].

Internally, Tamarin always first normalizes terms, which allows it to compare the
resulting normal forms syntactically (and not modulo the equational theory). Ideally,
we would only have to perform this normalization during the pre-computation.
However, as we show next, instantiating a rule with normalized terms can lead to
non-normal terms.

Consider the following rule, which receives a message and decrypts it using a fixed
key, for which the full file is available at Variants.spthy.
rule decrypt:

[!Key(k), In(msg)]
--[]->

[Out(sdec(msg,k))]

Consider too an instance of this rule where the argument of the In fact is
senc(m1, k). This rule instance would have as an argument of Out the term
sdec(senc(m1, k), k), which is not in normal form. To avoid normalizing terms
every time a rule is instantiated, Tamarin computes so-called variants, which intu-
itively correspond to computing the possible normalizations in advance. The variants
are shown in interactive mode when clicking on Multiset Rewriting Rules, or
when exporting a file. A variant of a rule is a substitution that can be applied to the
rule to obtain a possible normalized instantiation of the initial rule.

For our example rule, Tamarin shows the following variants, shown in the full file
available at Variants_Export.spthy:

rule (modulo AC) decrypt:
[!Key(k), In(msg)] --> [Out(z)]

variants (modulo AC)
1. k = k.4

msg = msg.4
z = sdec(msg.4, k.4)

2. k = x.4
msg = senc(x.5, x.4)
z = x.5

First, note that Tamarin slightly modified the initial rule: it replaced the term
sdec(msg, k)) with a new variable z. It then computed two variants, as there are
two cases, depending on the input.

• In general, for an input msg.4 and a key k.4, the output z is sdec(msg.4, k.4)
(variant 1).

• If the input is an encryption of the form senc(x.5, x.4), where x.4 is used
as the decryption key, then the decryption in the output z will normalize to x.5
(variant 2).

6.8 Adversary deductions 109

This way, Tamarin does not need to constantly normalize terms: if it encounters an
encryption and the corresponding key, then the second variant is used, otherwise the
first2. Tamarin computes a complete3 set of variants for all rules when loading a
theory, and then reasons using these variants rather than the initial rules. Note that
for this to work out, Tamarin requires that the equational theory yields only a finite
number of variants. For some equational theories, the set of variants is infinite, and
in that case it is impossible to compute all of them. Having only a finite number of
variants is called the Finite Variant Property (FVP) [36] of an equational theory. Note
that convergence is a necessary condition for the FVP, but it is not sufficient.

Equation store

Tamarin also employs another optimization based on variants, called an equation
store. The idea is that for complex equational theories, a rule can have numerous
variants. For example, when using Diffie-Hellman exponentiation, some rules have
more than 40 variants. However, when inserting such a rule into the dependency
graph, Tamarin would immediately generate all 40+ subcases, one for each variant,
all of which must be resolved separately. In practice, it is often more efficient
to not immediately split on all these cases, and continue with the modified rule
without substituting variables. To remember which substitutions still must be applied,
Tamarin stores the substitutions corresponding to the variants in an equation store. It
also adds an equation split constraint splitEqs(i), for some i, to the list of unsolved
constraints. When this constraint is solved, Tamarin generates a subcase for each
variant by applying one of the equations from the store. In the above example, there
would be two subcases: one for variant 1 (an input that is not a correct encryption),
and one for variant 2 (the input is an encryption with the right key).

6.8 Adversary deductions

Tamarin implements an active network adversary, often called the Dolev-Yao
adversary, due to the seminal work on symbolic reasoning for cryptographic protocols
by Dolev and Yao [54]. This adversary is in complete control of the network, i.e.,
it can intercept, read, modify, or delete all messages sent over the network. It can
also inject messages it constructed itself, by applying functions to terms it already
knows. Essentially, this adversary is only limited by the cryptography: for example,
to decrypt a value, it must know the right key.

2 In fact, using the first variant with an encryption and the corresponding key yields non-normal
terms. As Tamarin ignores cases with non-normal terms, these cases are, in fact, exclusive.
3 The set of variants is complete if for any substitution instantiating the terms of a rule, there exists
a variant and a substitution that together are syntactically equal to the normalized version of the
instantiated rule.

110 6 A First Glimpse Under the Hood

6.8.1 Why the naive Dolev-Yao implementation fails

In theory, such an adversary could be easily modeled using only a few multiset rewrite
rules, as shown in Section 3.1.8. However, reasoning with these rules cannot be
effectively automated.

Recall that Out and In model sending and receiving messages. Using a new persistent
fact K (for knows or knowledge), the following rules allow the adversary to learn all
messages output by the protocol, and to choose the messages input by the protocol.
rule irecv:

[Out(x)] --> [!K(x)]

rule isend:
[!K(x)] --[K(x)]-> [In(x)]

Similarly, the following rules model that the adversary can learn all public values,
and generate its own fresh values.
rule pub:

[] --> [!K($x)]

rule fresh:
[Fr(~x)] --> [!K(~x)]

Finally, the adversary can also apply functions to terms. So for any function f of arity
𝑛, the following rule models its application to 𝑛 terms by the adversary.
rule f:

[!K(x.1), ..., !K(x.n)] --> [!K(f(x.1, ..., x.n))]

In Tamarin, all rules are considered modulo the equational theory. For example,
applying the decryption function to a message encrypted with the same key will yield
the plaintext message through normalization.

The above adversary rules give a concise and precise description of the adversary’s
capabilities. The problem with this approach can be seen with a small example.
Consider a simple equational theory with a function < ·,· > for pairing, and two
functions fst and snd with the following equations.
fst(< x.1, x.2 >) = x.1,
snd(< x.1, x.2 >) = x.2

For each of these three functions, we would then model the corresponding rule that
allows the adversary to apply them.
rule pair:

[!K(x.1), !K(x.2)] --> [!K(< x.1, x.2 >))]

rule fst:
[!K(x)] --> [!K(fst(x))]

rule snd:
[!K(x)] --> [!K(snd(x))]

6.8 Adversary deductions 111

In this example, the adversary could, for example, generate two public values $A and
$B, compute the pair <$A, $B> by applying the rule pair, then extract $A and $B
again, then recompute the pair <$A, $B>, and so on.

To avoid these loops when constructing proofs, Tamarin uses a different approach to
model the adversary’s deduction. First, we explain how Tamarin splits the adversary
deduction rules into deconstruction and construction rules. Second, we look at normal
form conditions that limit what deductions the adversary will consider. Third, we
will look at how exactly Tamarin solves deconstruction constraints.

6.8.2 Splitting the adversary deduction rules

Tamarin splits adversary deduction rules into two sets: deconstruction and construc-
tion rules. The deconstruction rules decompose terms, extracting smaller subterms.
Once the terms are decomposed, the adversary can then use these terms to construct
larger terms, but it cannot return to decomposing the created terms. If the right-hand
sides of all equations are strict subterms of the left-hand sides, this yields a terminating
procedure. Thus, if we want to know whether a given term t can be deduced from a
set of terms S, we first decompose the terms in S, which will terminate as the terms
only get smaller. Afterwards, the construction rules can compose the resulting terms
into larger terms, but only up to the size of the specific term t being investigated,
which again terminates. In Tamarin, this division is enforced by splitting the K fact
into two facts: KD (read: K down) for the deconstruction part, and KU (read: K up) for
the construction part.

Concretely, Tamarin uses the following construction rules for the applications of the
fst, snd, and pairing functions. Note that all these rules now operate on KU facts,
instead of K facts.
rule c_fst:

[!KU(x)] --[!KU(fst(x))]-> [!KU(fst(x))]

rule c_snd:
[!KU(x)] --[!KU(snd(x))]-> [!KU(snd(x))]

rule c_pair:
[!KU(x), !KU(x.1)]

--[!KU(<x, x.1>)]->
[!KU(<x, x.1>)]

The next two rules allow the adversary to generate fresh and public values.
rule pub:
[] --[!KU($x)]-> [!KU($x)]

rule fresh:
[Fr(~x)] --[!KU(~x)]-> [!KU(~x)]

Moreover, Tamarin uses the following deconstruction rules.

112 6 A First Glimpse Under the Hood

rule d_0_fst:
[!KD(<x.1, x.2>)] --> [!KD(x.1)]

rule d_0_snd:
[!KD(<x.1, x.2>)] --> [!KD(x.2)]

These rules correspond to the application of the fst and snd functions on a pair.
They can be seen as a variant of the c_fst and c_snd rule, respectively, for the case
where the equation applies. Note that they only operate on KD facts.

We need to slightly adapt the send and receive rules: the adversary sends messages that
it can construct, and messages that it receives are first considered for deconstruction.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]
rule irecv:
[Out(x)] --> [!KD(x)]

The receive rule now creates a KD fact instead of a K fact, so that deconstruction rules
can be applied. The send rule uses a KU fact, so that the adversary can construct
arbitrary terms as protocol inputs.

Finally, there is a new rule called coerce that allows the transition from term
deconstruction to construction.
rule coerce:

[!KD(x)] --[!KU(x)]-> [!KU(x)]

The coerce rule converts a KD into a KU fact. This stops further deconstruction and
allows Tamarin to move to the construction part of the proof.

Together, these rules prevent the adversary from looping rule applications as in the
above example: once it has constructed a pair, the pair is stored inside a KU fact, but
the deconstruction rules for fst and snd need a KD fact. Still, this decomposition
into two parts does not limit the adversary: one can show that the adversary can still
deduce the same terms that it could deduce using the initial rules.

Note that there is a subtlety when it comes to deconstruction rules for more complicated
equations. Consider the following equation that models symmetric encryption.
sdec(senc(m, k),k) = m

The deconstruction rule Tamarin computes for this equation is as follows.
rule d_0_sdec:

[!KD(senc(m, k)), !KU(k)] --> [!KD(m)]

As expected, the senc(m, k) term is inside a KD fact. However, the key k used to
decrypt is inside a KU fact. This is important, as it allows the adversary to compose
terms to generate more complicated keys. Note that terms inside KD facts can still be
used via the coerce rule. The exact procedure used to generate the deconstruction
rules is described in [57].

6.8 Adversary deductions 113

St(~a, ~k) In(<~a, ~a>)

#i : End[Fin(~a)]

!KU(<~a, ~a>)

#vf : isend[K(<~a, ~a>)]

In(<~a, ~a>)

Fr(~a) Fr(~k)

#vr : Init[]

K(~k) St(~a, ~k) Out(enc(~a, ~k))

#vf.1 : Fresh[]

Fr(~a)

#vf.2 : Fresh[]

Fr(~k)

!KU(<~a, ~a>) @ #vk

!KU(~a) @ #vk.1

Fig. 6.22: An open input, from Example 13

6.8.3 Normal form conditions for adversary deductions

Tamarin also uses normal form conditions to normalize the adversary deduction in
a given dependency graph. There are multiple such conditions, and any deduction
not respecting these conditions is ignored by Tamarin. One can regard this as only
considering one representative from a class of equivalent deductions: if the adversary
could derive a term t from a set of terms in multiple different ways, it suffices to
consider only one possible such derivation. Naturally, these conditions have been
proven sound. Examples of these conditions include:

• Terms must always be in normal form.

• The adversary is not allowed to deduce the same value twice.

• The adversary cannot apply the coerce rule on pairs; any pair must be fully
deconstructed first.

There are other such conditions, some of which are tailored for special equational
theories such as Diffie-Hellman exponentiation.

6.8.4 Backwards reasoning for deduction constraints

As explained in Section 6.2, Tamarin reasons backwards: starting for example from
a protocol input. So how can the adversary compute such a valid input?

114 6 A First Glimpse Under the Hood

St(~a, ~k) In(<~a, ~a>)

#i : End[Fin(~a)]

!KU(<~a, ~a>)

#vf : isend[K(<~a, ~a>)]

In(<~a, ~a>)

!KD(~a)

#vk : coerce[!KU(~a)]

!KU(~a)

!KU(<~a, ~a>) @ #vk.1

Out(~k.1)

#vl : irecv[]

!KD(~k.1)

Fr(~a) Fr(~k)

#vr : Init[]

K(~k) St(~a, ~k) Out(enc(~a, ~k))

#vf.1 : Fresh[]

Fr(~a)

K(~k.1)

#vr.1 : Reveal[Rev(~k.1)]

Out(~k.1)

#vf.2 : Fresh[]

Fr(~k)

Fr(~a.1) Fr(~k.1)

#vr.2 : Init[]

K(~k.1) St(~a.1, ~k.1) Out(enc(~a.1, ~k.1))

#vf.3 : Fresh[]

Fr(~a.1)

#vf.4 : Fresh[]

Fr(~k.1)

Fig. 6.23: A deconstruction chain from the Reveal rule.

To solve such adversary deduction constraints, Tamarin proceeds as follows. An
input must stem from the isend rule. This in turn implies that there must be a KU fact
with the corresponding term. This fact can either be created using a construction rule,
or is the result of the coerce rule. If it is the result of the coerce rule, we now need a
KD fact with the term in question. To solve KD premises, Tamarin uses a special type
of constraint, called a deconstruction chain constraint. It initially links the open KD
premise to an instance of the irecv rule. It is resolved either using a direct edge or
using one or more deconstruction rules in between.

Consider Example 13 from Section 6.2, and the following lemma4.
4 Note that normally Tamarin does not show all the steps described in the following, as much of this
reasoning is precomputed (see Chapter 8) and the precomputed sources are used instead to speed

6.8 Adversary deductions 115

St(~a, ~k) In(<~a, ~a>)

#i : End[Fin(~a)]

!KU(<~a, ~a>)

#vf : isend[K(<~a, ~a>)]

In(<~a, ~a>)

!KD(~a)

#vk : coerce[!KU(~a)]

!KU(~a)

!KU(<~a, ~a>) @ #vk.1

Out(enc(~a.1, ~k.1))

#vl : irecv[]

!KD(enc(~a.1, ~k.1))

Fr(~a) Fr(~k)

#vr : Init[]

K(~k) St(~a, ~k) Out(enc(~a, ~k))

#vf.1 : Fresh[]

Fr(~a)

Fr(~a.1) Fr(~k.1)

#vr.1 : Init[]

K(~k.1) St(~a.1, ~k.1) Out(enc(~a.1, ~k.1))

#vf.2 : Fresh[]

Fr(~k)

#vf.3 : Fresh[]

Fr(~a.1)

#vf.4 : Fresh[]

Fr(~k.1)

Fig. 6.24: A deconstruction chain from the Init rule.

lemma Execute:
exists-trace
"Ex a #i. Fin(a)@#i"

During the proof of this lemma, Tamarin encounters the following situation, pic-
tured in the dependency graph given in Figure 6.22: the End rule has a premise
constraint <~a, ~a>. Tamarin has already reduced this to the unsolved constraint
!KU(~a) @ #vk.1, i.e., the adversary only needs to learn ~a to generate the pair
required as the input. Since the fresh value was generated by a protocol rule, the
adversary cannot generate the same value. Hence, when considering the possible
sources for this value, Tamarin generates two subcases, one for each protocol rule

up the reasoning. Most of the time, deconstruction chains are only visible in the form of partial
deconstructions, i.e., incomplete deconstruction chains remaining at the end of the precomputations
(see Chapter 8). The images shown here were generated by preventing Tamarin from solving
deconstruction chains during precomputation using the argument -c=0 (see Section 8.1).

116 6 A First Glimpse Under the Hood

St(~a, ~k) In(<~a, ~a>)

#i : End[Fin(~a)]

!KU(<~a, ~a>)

#vf : isend[K(<~a, ~a>)]

In(<~a, ~a>)

!KD(~a)

#vk : coerce[!KU(~a)]

!KU(~a)

!KU(<~a, ~a>) @ #vk.1

Out(enc(~a.1, ~k.1))

#vl : irecv[]

!KD(enc(~a.1, ~k.1))

!KD(enc(~a.1, ~k.1)) !KU(~k.1)

#vr.2 : d_0_dec[]

!KD(~a.1)

Fr(~a) Fr(~k)

#vr : Init[]

K(~k) St(~a, ~k) Out(enc(~a, ~k))

#vf.1 : Fresh[]

Fr(~a)

Fr(~a.1) Fr(~k.1)

#vr.1 : Init[]

K(~k.1) St(~a.1, ~k.1) Out(enc(~a.1, ~k.1))

#vf.2 : Fresh[]

Fr(~k)

#vf.3 : Fresh[]

Fr(~a.1)

#vf.4 : Fresh[]

Fr(~k.1)

!KU(~k.1) @ #vk.2

Fig. 6.25: A deconstruction chain from the Init rule, now with a deconstruction rule
added for decryption.

that has an Out fact in the conclusion: the Reveal and Init rules. The two subcases
are given in Figures 6.23 and 6.24.

One can see that, in both cases, Tamarin added a coerce rule and an isend rule,
and that both are linked using a green dotted arrow. This arrow corresponds to a
deconstruction chain, and a corresponding chain constraint has also been added to the
list of unsolved constraints: solve((#vl, 0) ~~> (#vk, 0)). When solving
such a chain constraint, Tamarin considers multiple possible solutions: either the
chain can be replaced with a direct edge (i.e., one can unify the conclusion and the
premise and add an edge), or a deconstruction rule can be added if the terms do not
match and cannot be unified.

6.8 Adversary deductions 117

In the first case, where the output comes from a Reveal rule, the output and the
“target” are both fresh variables, so Tamarin adds a direct edge by unifying ~k.1 and
~a. This then leads to a contradiction, as the same fresh value would be created by two
different instances of the fresh rule (#vf.1 and #vf4). Thus Tamarin immediately
closes this case.

St(~a, ~k) In(<~a, ~a>)

#i : End[Fin(~a)]

!KU(<~a, ~a>)

#vf : isend[K(<~a, ~a>)]

In(<~a, ~a>)

!KD(~a)

#vk : coerce[!KU(~a)]

!KU(~a)

!KU(<~a, ~a>) @ #vk.1

Out(enc(~a, ~k))

#vl : irecv[]

!KD(enc(~a, ~k))

!KD(enc(~a, ~k)) !KU(~k)

#vr.1 : d_0_dec[]

!KD(~a)

Fr(~a) Fr(~k)

#vr : Init[]

K(~k) St(~a, ~k) Out(enc(~a, ~k))

#vf.1 : Fresh[]

Fr(~a)

#vf.2 : Fresh[]

Fr(~k)

!KU(~k) @ #vk.2

Fig. 6.26: The solved deconstruction chain.

118 6 A First Glimpse Under the Hood

In the second case, where the output comes from the Init rule, Tamarin knows
that a direct edge does not work as an encryption (enc(~a.1, ~k.1)) and a fresh
variable (~a) cannot be unified. Thus it adds a decryption deconstruction rule, which
leads to the dependency graph given in Figure 6.25.

Note that there is still an unsolved chain constraint as, in general, one might need to
apply other deconstruction rules. However, in this case, Tamarin can only solve it
using a direct edge, and we end up with the dependency graph given in Figure 6.26.
Here the deconstruction chain constraint is solved and both instances of the Init
rule have been merged as they use the same fresh values, which must be unique. Note
that one open constraint is still left: Tamarin must check whether the adversary can
obtain the key required for decryption.

Note that Tamarin reasons in a backward fashion in general, i.e., by solving premises.
In this case, Tamarin solved the deconstruction chain starting from the protocol
output, a conclusion fact, and produced the needed messages in a forward fashion,
i.e., building the message needed as input from the previous output. This is necessary
to use the decomposition part of the adversary deduction efficiently, as the form of
the term determines which deconstruction rules can be applied. For example, on
an encryption, the only relevant deconstruction rule is the decryption rule. When
starting from the premise, i.e., the desired term, Tamarin would not know whether
a certain deconstruction rule (for example decryption) makes sense until it finally
encounters the output (which might be an encryption, or not).

6.8.5 Reasoning about adversary knowledge

So far we discussed how Tamarin models the adversary and how it reasons efficiently
about possible adversary deductions. Often, one also needs to reason about the
adversary in lemmas. For example, we might state that a term t is secret if the
adversary cannot deduce it. For this, one can use the K action fact on the isend rule
inside a lemma to check that a term cannot be derived by the adversary.

"All t #j . A(t)@#j ==> not(Ex #i. K(t)@#i)"

During Tamarin’s search, the above lemma is negated to find a counterexample.
Tamarin thus constructs a dependency graph in which both A(t)@#j and K(t)@#i
occur. Recall that the K action fact occurs on the isend rule, whose premise is any
KU fact. This ensures that the adversary can use all construction and deconstruction
rules on all outputs to try to deduce t.

Note that there is subtle difference between a term t being deducible by the adversary
at a step #i, and having the action K(t) on a trace at timepoint #i. The action K(t)
at timepoint #i means that the adversary deduced t in this precise step, so clearly
t was deducible at this point. However, any term t.1 that was deduced before is
obviously still deducible at this point, but there is no such action, as timepoints are
unique in Tamarin and we cannot execute multiple rules at the same time. Moreover,

6.8 Adversary deductions 119

as Tamarin computes the trace in a lazy backwards fashion, there can be other
terms that are deducible, but for which no K action exists (yet), simply as it was not
necessary to deduce them so far.

When looking carefully at the rules, we can see that the construction rules and
the coerce rule are annotated with a KU action containing the term constructed or
“coerced” in that rule. These special annotations are used for sources lemmas, where
one must reason about the intermediate terms that were used during the construction
of a message, as explained in Section 8.2.

Note that for these and other intermediate lemmas, one can use both KU and K actions.
However, for the final lemmas defining the desired properties, one should generally
only use the K actions as they are the ones defined by Tamarin’s semantics.

Finally, even when using K and KU actions together, it is not possible to reason about
all the terms that Tamarin has deduced, as the deconstruction rules have no actions.
We will return to this in Section 11.8.2.

Chapter 7

Built-in Equational Theories for Common
Operators

Tamarin’s expressiveness and its usefulness stems, in part, from the wide range of
operators that it supports. Tamarin has built-in support for common operators and
users may additionally define their own operators. We describe the built-in operators
in this section

By default, Tamarin always includes the definitions of several basic operators
for constructing and decomposing tuples of terms. Namely it includes the pairing
function pair/2 with the shorthand <·,·>, as well as the first tuple projection operator
fst/1 and the second tuple projection operator snd/1. Moreover, it adds to every
equational theory the equations fst(pair(x,y))=x and snd(pair(x,y))=y. The
pairing function may be nested, creating ordered lists in a right-associative manner.
That is, Tamarin allows the user to write tuples like <x,y,z> without explicit
parenthesization, with the interpretation being <x,<y,z>>.

Tamarin additionally has default built-in models for a range of cryptographic
primitives, such as hashing and encryption, that can be turned on by adding the line

builtins: NAME

with NAME the name of the desired equational theory. In the following, for each built-in,
we give the respective function declarations and equations that are included when the
built-in is added. In Chapter 14 we will explain how the user can define such equational
theories themselves. Not only can all of the built-ins be freely combined with each
other, their combination with other user-defined theories is possible, although there
are some limitations in the latter case as explained in Chapter 14. We present an
overview of the available equational theories in Table 7.1.

We start with the subset of built-in equational theories that are just syntactic sugar,
called syntactic built-ins. Giving their name as a built-in is just shorthand for adding a
set of operators and equations, as they are shown below. The operators and equation sets
contained therein can be written by users themselves and specifying these directly in
the theory is equivalent to adding the syntactic built-in. We include the built-in names,
with their resulting expansion, in EquationalTheoriesBuiltinSyntacticSugar.spthy. They

121

122 7 Built-in Equational Theories

Built-in name Description Section

hashing Defines a hash function h 7.1.1
asymmetric-encryption Asymmetric encryption 7.1.2
symmetric-encryption Symmetric encryption 7.1.3
signing Basic signatures 7.1.4
revealing-signing Signatures allowing plaintext extraction 7.1.5

multiset Multisets (bags) in messages 7.2.1
xor Exclusive-or 7.2.2
diffie-hellman Diffie-Hellman style exponentiation 7.2.3
bilinear-pairing Bilinear pairing 7.2.4
natural-numbers Natural numbers and counters 7.2.5

Table 7.1: Overview of built-in equational theory names, with a short description,
and section reference for details.

include hashing, asymmetric-encryption, symmetric-encryption, signing,
and revealing-signing.

7.1 Syntactic built-ins

Syntactic built-ins constitute shorthands: they are simply replaced by predefined
functions and equational theories. Hence the user could alternatively just include this
replacement directly in their input file, or arbitrarily rename the functions.

7.1.1 Hashing

The built-in hashing declares the function name h/1, i.e., a function named h of
arity 1 for which no equations are given:
builtins: hashing

is equivalent to
functions: h/1

This is intended to model a perfect one-way and collision resistant hash function, for
which there is no way to recover the pre-image or find a collision. For more advanced
models of imperfect hash functions, see Section 15.2.2.

7.1 Syntactic built-ins 123

7.1.2 Asymmetric encryption

The built-in asymmetric-encryption declares a pk/1 function that takes a private
key as an argument and represents the associated public key. The encryption function
aenc/2 takes the message and the public key as arguments and represents the resulting
ciphertext, while the decryption function adec/2 takes the ciphertext and private key
to extract the message. Thus,
builtins: asymmetric-encryption

is equivalent to
functions: pk/1, adec/2, aenc/2
equations:

adec(aenc(m, pk(k)), k) = m

Note that this corresponds to a deterministic encryption scheme as there is no
randomness used in the encryption function.

To model a non-deterministic encryption scheme, one can simply add a third argument
to the encryption function as follows:
functions: penc/3, pdec/2, pk/1

equations: pdec(penc(m,pk(k),r), k) = m

Here penc stands for probabilistic encryption and pdec stands for probabilistic
decryption. Note that these equations model a very strong, non-malleable, encryption
scheme, as there is no way to modify a ciphertext. This is in contrast, for example, to
textbook RSA (without padding) or ElGamal encryption.

7.1.3 Symmetric encryption

For symmetric-encryption, the built-in declares two functions. The function
senc/2 represents the symmetric encryption of a message with a key, resulting in a
ciphertext. The decryption function sdec/2 takes a ciphertext, the key, and extracts
the message. Thus,
builtins: symmetric-encryption

is equivalent to
functions: sdec/2, senc/2
equations:

sdec(senc(m, k), k) = m

This models a deterministic scheme without an initialization vector. Similarly to
asymmetric encryption above, one can add a third argument to the encryption function
to model a non-deterministic scheme with an initialization vector.

124 7 Built-in Equational Theories

Note that this model formalizes an encryption scheme that is again much stronger
than many schemes used in practice. In general, one cannot detect during decryption
whether the ciphertext was created using a given key; consider, for example, a one-time
pad. But here, the equation only applies when this is the case. Note that one can
still have rules that apply independently of the key; for details see the discussion
in Section 10.1.6. In practice, symmetric encryption schemes can have a range of
different properties. See, for example, Section 15.2.3 on how to model authenticated
symmetric encryption.

7.1.4 Signing

Signing adds a function pk/1, as in asymmetric-encryption. We also declare the
function true/0, which takes no arguments, and is used as the output in case of
successful signature verification. The function sign/2 takes a message and a private
key representing the signature, while the function verify/3 takes a signature, the
message, and the public key, and is equal to true if and only if a signature can be
verified:
builtins: signing

is thus equivalent to
functions: true/0, pk/1, sign/2, verify/3
equations:

verify(sign(m, k), m, pk(k)) = true

Note that this corresponds to a deterministic signature scheme as there is no random-
ness used in the signature creation function. For more details and for more precise
models of signatures see Section 15.1 and also [74].

7.1.5 Signatures that reveal the plaintext

Revealing-signing is a version of signing that additionally declares the getMessage/1
function. This function can extract the message inside a signature, and is otherwise
(except for minor renaming) just like the signing case above:
builtins: revealing-signing
functions: true/0, pk/1, getMessage/1,revealSign/2, revealVerify/3
equations:

getMessage(revealSign(m, k)) = m,
revealVerify(revealSign(m, k), m, pk(k)) = true

7.2 Algorithmic built-ins 125

7.2 Algorithmic built-ins

Unlike the previous built-ins, the built-ins given in this section are not syntactic sugar
for a user-definable equational theory. This is mostly due to their use of underlying
equational axioms, such as associativity-commutativity (AC), which Tamarin does
not allow the user to define. The reason for this is that most equational theories using
AC symbols directly lead to the non-termination of Tamarin’s reasoning algorithms,
if no special optimizations are present. In practice, this means that a user cannot
just simply include such equational theories in their model (or under renaming), and
should instead always use builtins: NAME in their model.

7.2.1 Multisets (bags)

The simplest such built-in is that of multisets (of terms), using builtins: multiset,
which was introduced in [103]. This built-in defines a function symbol +, which takes
two arguments and is associative-commutative. Hence one can write x + y + z with-
out explicit parenthesization instead of functional prefix notation like +(x,+(y,z)).

7.2.2 Exclusive-or

The exclusive-or theory is available with builtins: xor and was added in [58]. It
declares the function symbol XOR/2, which can also be written as ⊕, and the neutral
element constant zero/0. The XOR function is associative-commutative and can be
written without parentheses (like multisets). XOR satisfies that zero is the neutral
element, and that terms self-cancel, as shown here.
x XOR zero = x
x XOR x = zero

Note that constructing terms from XOR as the outermost (top-level) operator, and
having them sent out on the network, creates a very large search space for Tamarin
and often leads to non-termination. We suggest, where possible, “hiding” the XOR
term underneath an encryption or a hash function, e.g., h(x XOR y). This yields
much better termination results than sending x XOR y directly.

7.2.3 Diffie-Hellman exponentiation

The builtins: diffie-hellman provides exponentiation ˆ/2 (which can also
be written as exp/2 using prefix notation) and multiplication */2, limited to the

126 7 Built-in Equational Theories

exponents. The multiplication is associative-commutative. Moreover, repeated expo-
nentiation is equal to the multiplication of the exponents, as expected.
(x^y)^z = x^(y*z)

The constant ONE/0 (also written as 1) is neutral both for exponentiation and multipli-
cation, and the inverse function inv/1 gives the inverse and cancels multiplicatively.
x^1 = x
x*1 = x
x*inv(x) = 1

The constant DH_neutral/0 is the neutral element as the base of exponentiation.
DH_neutral^x = DH_neutral

The general Diffie-Hellman theory was introduced in [102]. The neutral element
was introduced later in [47] and represents the fixed point under exponentiation.
Every group contains such a neutral element, but whether it can occur in protocol
executions depends on the implementation. For example, some implementations use
a coordinate system where the neutral element cannot be expressed, whereas other
implementations explicitly check whether received values correspond to the neutral
element and reject them when this is the case.

By default, the Diffie-Hellman theory assumes the worst case, i.e., that there is no
explicit check for the neutral element and that it can be expressed in the implementation.
For example, the following rule could be instantiated with the neutral element.
builtins: diffie-hellman

rule any_element:
let key = v^~s
in
[In(v), Fr(~s)]
--[UncheckedNeutralKey(key)]->
[]

When instantiated with the neutral element, the adversary can in fact derive the value
of key despite not knowing ~s. Thus the following lemma is false and Tamarin finds
a counterexample.
// Lemma is false: if adversary sends the neutral element,
// it can infer the key
lemma secret_key:

"All #i x. UncheckedNeutralKey(x)@i ==> not Ex #j. K(x)@j"

In the counterexample, the adversary inserts the neutral element for v, and by the
equation above, the key key is also equal to the neutral element.

As mentioned above, whether this attack is possible in reality depends on the
coordinate system, or whether neutral elements are checked and rejected. If we
know that for a given protocol or its implementation, the neutral element is rejected
or cannot be represented, we can explicitly model the rejection check by pattern
matching the received values to ’g’ˆx, for some new variable x. The variable only

7.2 Algorithmic built-ins 127

serves to check the structure of the term, but should not be used outside of the pattern
matching, since the recipient cannot derive this term.

Thus, we can model the rule from above with the pattern matching check.
rule no_neutral_element:

let v = 'g'^x // pattern matching structure of v to exclude neutral element
key = v^~s

in
[In(v), Fr(~s)]
--[CheckedNonNeutralKey(key)]->
[]

For the above rule, the derived key is secret since ~s is secret. Hence Tamarin can
prove the following lemma.
// Lemma holds: if received v is of the form 'g'^x,
// it is not the neutral element
lemma secret_key_with_check:

"All #i k. CheckedNonNeutralKey(k)@i ==> not Ex #j. K(k)@j"

The full file for this is available at Neutral_element_check.spthy.

In practice, Diffie-Hellman constructions have many other subtle side cases based
on, e.g., small subgroups and invalid curve elements. We will return to this topic in
Section 15.2.1 and full details are provided in [47].

7.2.4 Bilinear pairing

The builtins: bilinear-pairing models bilinear pairings and was introduced
in [103] and includes all of the previous diffie-hellman theory. Their combination
also works, as DH is just a subset of bilinear-pairing, and including both is no
different from including just bilinear pairing. The new functions are pmult/2 for
point multiplication, where pmult(x,p) denotes multiplying the scalar x with the
point p, and em/2 for the bilinear map with two points, where em is commutative. The
equations state that 1 as a scalar is neutral for point multiplication, that repeated point
multiplication with scalars is the same as multiplying the scalars first, and that scalar
multiplication can be pulled outside the bilinear pairing of points as exponentiation.
pmult(1,p) = p
pmult(x,(pmult(y,p)) = pmult(x*y,p)
em(pmult(x,p),q) = em(p,q)^x

7.2.5 Numbers and counters

Tamarin provides basic support for reasoning about natural numbers, which can be
used to model counters and other such mechanisms. The support is enabled through
a natural-numbers built-in, by including in the input file:

128 7 Built-in Equational Theories

builtins: natural-numbers

Recall that Tamarin has a top-level type Msg with two incomparable sub-types, Fresh
and Pub. The natural-numbers built-in defines the Nat type as another sub-type of
Msg, which is again incomparable with both of Fresh and Pub. We can indicate that a
variable is of type Nat by adding a % prefix (or :nat suffix) to the variable’s name.

The built-in provides support for

• the constant 1, denoted by %1 or 1:nat,

• an addition operator %+,

• the equality relation =, and

• a less-than relation denoted by << or the Unicode symbol ⊏.

For technical reasons, Tamarin does not support full arithmetic. Notably, there is no
neutral element 0, division, or multiplication of two variables. While these would also
be useful for modeling, their addition would lead to undecidable problems associated
with the case distinctions in Tamarin’s proof search and we lack tractable procedures
even for the special cases that typically arise. The full theoretical details for this
built-in are described in [48].

Consider the following simple example of a protocol, available in the file naturals.spthy,
where the state fact S(tid,n) contains a thread identifier and a counter value. We
have two rules: init and step, where the first rule creates an S fact with a fresh tid
and counter value one, and the second rule increments the counter. Both rules have
actions A(tid,n) that log the updated parameters of the S fact.
rule init:

[Fr(~tid)]
--[A(~tid, %1)]->
[S(~tid, %1)]

rule step:
[S(~tid, %n)]
--[A(~tid, %n %+ %1)]->
[S(~tid, %n %+ %1)]

We can then prove the following lemma.
lemma increasing:

"All tid n1 n2 #i1 #i2.
A(tid,n1)@i1 & A(tid,n2)@i2 & #i1 < #i2

==> n1 << n2"

This lemma states that for two A actions with the same tid at timepoints #i1 < #i2,
the number n1 at #i1 must be smaller than the number n2 at #i2.

An important design choice in Tamarin’s modeling of natural numbers is that any
term of the Nat type can be directly derived by the adversary. In this sense, the Nat
type behaves like the Pub type: Nat terms are never secret. Thus, one could consider
elements of the Nat type to represent “small” numbers that an adversary might guess.

7.2 Algorithmic built-ins 129

If one wants to model large unguessable numbers instead, we recommend using the
fresh type. However, that type neither supports addition nor an ordering relation.

Chapter 8

Pre-computations and Partial Deconstructions

Tamarin performs various optimizations to accelerate proof construction, and we
discuss one such optimization in this chapter. Namely, when loading an input theory,
Tamarin performs pre-computations to speed up constraint solving later on. The
idea is to pre-compute larger constraint solving steps for common parts of the search,
which Tamarin is likely to encounter multiple times.

8.1 Pre-computations and sources

For all protocol facts, Tamarin performs a backwards search for their sources, using
the constraint solving algorithm described in Section 6.2. The sources of a protocol
fact are those partial executions that yield that fact. These executions are usually
incomplete, as trying to compute the complete executions could cause non-termination
of the precomputations. For example, adversary deduction steps are not fully explored
as this might not terminate. Similarly, protocol facts that can appear in loops are also
not explored fully.

Additionally, Tamarin pre-computes the sources of KU facts, where it considers
different subcases depending on the form of the term inside the fact. In particular, it
computes the sources of:

1. KU(~x), i.e., fresh values; and

2. KU(f(x.1, ..., x.n)) for all functions f defined in the equational theory.

In a nutshell, these pre-computation steps yield sources as follows. For each protocol
fact and instance of the KU facts, Tamarin generates an empty constraint system
with a constraint that requires the presence of the fact in question. It then applies
its normal constraint solving procedure. However, to avoid non-termination of the
pre-computations, Tamarin stops the constraint solving when it encounters a case

131

132 8 Pre-computation and Deconstructions

distinction with more than one subcase. This means that a source can (and typically
does) contain one or more open constraints.

Example 15 Consider the following simple challenge-response protocol, available
at sourcesWithoutLemma.spthy.

1. I -> R: {'req',I, n}pk(R)
2. I <- R: {'resp',n}pk(I)

In the first step, the initiator sends out a request (identified using the constant ’req’)
together with his name and a fresh nonce, encrypted using the responder’s public
key. The responder answers with a response message (identified using the constant
’resp’) together with the nonce, encrypted using the initiator’s public key.

Using the model of a public key infrastructure first shown in Section 5.6 and discussed
in Section 5.5, we can model this protocol using the following three rules.
// Initiator
rule Rule_I_1:

let m1 = aenc{'req', $I, ~n}pkR
in

[Fr(~n), !Pk(R, pkR), !Ltk($I, ltkI)]
--[SecretI($I,R,~n)]->

[Out(m1), State_I($I, R, ~n, pkR, ltkI)]

rule Rule_I_2:
let m2 = aenc{'resp', ~n}pk(ltkI)
in

[State_I($I, R, ~n, pkR, ltkI), In(m2)]
--[]->

[]

// Responder
rule Rule_R:

let m1 = aenc{'req', I, x}pk(ltkR)
m2 = aenc{'resp', x}pkI

in
[!Ltk(R, ltkR), In(m1), !Pk(I, pkI)]

--[]->
[Out(m2)]

The sources contain 9 cases, including all three protocol facts, and six subcases for
the KU facts, including fresh values and all functions defined:

• !Ltk(t.1, t.2)

• !Pk(t.1, t.2)

• State_I(t.1, t.2, t.3, t.4, t.5)

• !KU(~t.1)

• !KU(adec(t.1, t.2))

• !KU(aenc(t.1, t.2))

• !KU(fst(t.1))

8.1 Pre-computations and sources 133

• !KU(pk(t.1))

• !KU(snd(t.1))

For example, the fact State_I has only one source, which is given in Figure 8.1.
Note that here all premises have been solved as there is only one source for the !Ltk
and !Pk facts, which is the rule Register_pk.

Fr(~n.7) !Pk($A.10, pk(~ltkA.10)) !Ltk($I.7, ~ltkA.13)

#vr.6 : Rule_I_1[SecretI($I.7, $A.10, ~n.7)]

Out(aenc(<'req', $I.7, ~n.7>,
 pk(~ltkA.10))
)

State_I($I.7, $A.10, ~n.7, pk(~ltkA.10),
 ~ltkA.13
)

(#i, 0)

Fr(~ltkA.10)

#vr.9 : Register_pk

!Ltk($A.10, ~ltkA.10) !Pk($A.10, pk(~ltkA.10)) Out(pk(~ltkA.10))

Fr(~ltkA.13)

#vr.12 : Register_pk

!Ltk($I.7, ~ltkA.13) !Pk($I.7, pk(~ltkA.13)) Out(pk(~ltkA.13))

Fig. 8.1: Only source of the fact State_I. All constraints have been solved.

The fact !KU(~t.1) has 4 sources and one example is given in Figure 8.2. Note
that this source contains open constraints as the origin of the key used for decryption
(constraint !KU(~ltkA.20)) remains to be solved.

#i : coerce[!KU(~t.1)]

Fr(~t.1) !Pk($A.20, pk(~ltkA.20)) !Ltk($I.7, ~ltkA.23)

#vr.6 : Rule_I_1[SecretI($I.7, $A.20, ~t.1)]

Out(aenc(<'req', $I.7, ~t.1>,
 pk(~ltkA.20))
)

State_I($I.7, $A.20, ~t.1, pk(~ltkA.20),
 ~ltkA.23
)

#vr.9 : d_0_adec

Fr(~ltkA.20)

#vr.19 : Register_pk

!Ltk($A.20, ~ltkA.20) !Pk($A.20, pk(~ltkA.20)) Out(pk(~ltkA.20))

Fr(~ltkA.23)

#vr.22 : Register_pk

!Ltk($I.7, ~ltkA.23) !Pk($I.7, pk(~ltkA.23)) Out(pk(~ltkA.23))

!KU(~ltkA.20) @ #vk.12

Fig. 8.2: One of the four sources of fact !KU(~t.1). The constraint
!KU(~ltkA.20) still needs to be solved.

If Tamarin encounters a chain constraint (see Section 6.8) that it cannot entirely
resolve, for example as it contains variables, this constraint remains unsolved. A

134 8 Pre-computation and Deconstructions

source that contains such an open chain constraint is called a partial deconstruction.
Partial deconstructions are often problematic as they can cause non-termination later
on during proof search. Intuitively, this happens as these partial deconstructions can be
applied in all cases where the intruder needs a term, because the unresolved variable(s)
can potentially match anything. Section 8.2 explains how partial deconstructions can
be solved using sources lemmas.

Once Tamarin has finished pre-computing the sources, it applies a saturation process.
That is, if inside a source there is an open premise corresponding to another source,
this second source is applied to the open premise. Effectively, this allows Tamarin’s
proof search to take bigger combined reasoning steps in one go. The saturation
process is applied repeatedly to all sources until either a fixedpoint is reached, i.e.,
there are no further changes, or until a bound is hit (which limits the time spent on
the process).

Although care has been taken to limit Tamarin’s pre-computation time, in some
examples the pre-computation might appear to not terminate as the time required
can still be substantial. In such cases, the pre-computations can be fine-tuned using
different (command-line) parameters and annotations. In particular, the following
options are available.

• Set the maximal number of saturation steps to the value N using the command-line
parameter --saturation=N.

• Limit the number of chain constraints to solve to a maximum of N using the
command-line parameter --open-chains=N. This is useful when using compli-
cated equational theories leading to numerous cases. However, too small a number
can result in partial deconstructions.

• Exclude certain facts from the precomputations. This is done by annotating facts
in the premises of rules with [no_precomp]. As those facts will no longer be
precomputed, solving them will only happen at runtime, which can increase proof
construction time. Moreover, this option can also result in partial deconstructions.

• When running Tamarin on the command line, one can use the
--precompute-only option, which tells it to stop right after the pre-
computation. Tamarin will then simply print a digest of the pre-computations,
e.g.:
Multiset rewriting rules: 7
Raw sources: 9 cases, 6 partial deconstructions left
Refined sources: 9 cases, deconstructions complete

This can be used to check how much time the pre-computation takes, to check
whether there are partial deconstructions, and whether they are resolved.

In practice, if Tamarin seems to be looping on startup, one can try to limit the first
two parameters to enable loading the theory. Once the theory is loaded, the interactive
mode can be used to analyze the problem’s causes and then relax the parameters
slowly.

8.3 Auto-sources 135

8.2 Sources lemmas

One can inspect the result of Tamarin’s initial pre-computations for a theory using
the link Raw sources in the interactive mode. This link appears in the left-hand
pane as can be seen, for example, in Figure 6.12. Tamarin then shows if there are
any partial deconstructions left, and when this is the case, one can analyze them.

To solve partial deconstructions, one must provide extra action fact annotations and
state a specific type of lemma allowing Tamarin to solve the open chains. Such lemmas
are called sources lemmas and are annotated as lemma name [sources]:

The entire process works in two steps. First, Tamarin computes the Raw sources.
Next, it applies all sources lemmas. Sources lemmas are used to restrict sources
in such a way that partial deconstructions are prevented, but no attacks are
missed, and we will show an example in Section 8.4. After applying the sources
lemmas, Tamarin shows either deconstructions complete or a number of
partial deconstructions left in the GUI. This second step results in the
Refined sources. Sources lemmas are proven on the raw sources using induction
(see Section 9.1). The refined sources are then used to prove the remaining non-source
lemmas.

Note that source lemmas are always applied before proving non-source lemmas,
independently of the order in which they appear in the input file. Moreover, as
non-source lemmas are proven using the refined sources (i.e., after applying the
sources lemmas), the non-sources lemmas are not valid if a sources lemma cannot be
proven; however, any attacks found are still valid. For strategies on how to write and
use sources lemmas see Section 8.4. In many cases, Tamarin can also try to generate
a suitable sources lemma itself, as explained in the next section.

8.3 Auto-sources

Tamarin can be run using the --auto-sources flag. When run using this option, if
there are partial deconstructions left in a theory, Tamarin will try to automatically
generate a suitable sources lemma. This lemma, called AUTO_typing, will be added
at the end of the theory, and it must be proven like a normal sources lemma.

Intuitively, to generate this lemma, Tamarin applies an approach similar to the one
described in Section 8.4. Tamarin will try to find matching outputs for all inputs that
cause partial deconstructions, and similarly matching conclusion facts for the premise
facts causing partial deconstructions. It then adds the necessary action facts to the
rules (starting with AUTO_IN_ or AUTO_OUT_), and generates the lemma using these
actions. If there are rules that have multiple variants with respect to the equational
theory, Tamarin will replace the rule with all its variants before computing and
adding the action facts. This is necessary as only some of the variants might actually

136 8 Pre-computation and Deconstructions

be relevant for the sources lemma, and it might be impossible to correctly annotate
the rules without computing the variants first.

In practice, when encountering partial deconstructions, one can simply try running
Tamarin using the --auto-sources flag. Although there is neither a guarantee
that the generated lemma resolves all partial deconstructions nor that it is correct,
this works in many cases in practice. One simply needs to verify the automatically
generated sources lemma just as a normal sources lemma. If this succeeds, one can
safely continue.

The automatic lemma generation may fail to identify all sources correctly in some
cases, in particular when using non-subterm-convergent equational theories or AC
symbols. In such cases, there can be partial deconstructions left, or one will not be
able to prove the generated lemma. In either case, one must write a lemma manually.

When exporting a theory containing an automatically generated lemma, this lemma
(and its proof if it exists) is exported like any other lemma. Since Tamarin will
have modified some rules by adding actions, the modified rules are also exported
instead of the original rules. Moreover, if Tamarin had to replace a rule by its
variants to add the actions, then these variants together with the added actions are
also exported explicitly (whereas normally, variants are not explicitly exported by
Tamarin; however that is not sufficient here as the added actions would be dropped).
Afterwards, everything can be loaded again as usual.

The annotations generated by Tamarin are hidden by default in the graphs in
interactive mode (except when proving the auto-generated sources lemma). One can
make them visible again using the Show annotation auto-sources button in the
Options menu in the top right corner.

8.4 Using sources lemmas

To see how to write a sources lemma, consider Example 15 from before. A simple
property to verify about this protocol is the secrecy of the nonce. The following
lemma expresses this property.

" not(
Ex A B s #i. SecretI(A, B, s) @ i & (Ex #j. K(s) @ j)

& not (Ex #r. RevLtk(A) @ r)
& not (Ex #r. RevLtk(B) @ r)

)"

Unfortunately, when trying to prove this lemma directly, Tamarin fails to complete
the proof. The reason for this is the presence of partial deconstructions. One partial
deconstruction (also called an open chain), out of the six found by Tamarin, is given
in Figure 8.3. In this graph, Tamarin tried to find the sources of encryptions and
found a partial deconstruction where the adversary extracts from the response the
value at the position of the nonce. At this stage, this value is only a variable (x.10),

8.4 Using sources lemmas 137

!KD(aenc(t.1, t.2))

#i : coerce[!KU(aenc(t.1, t.2))]

!KU(aenc(t.1, t.2))

Out(aenc(<'resp', x.10>, pk(~ltkA.24)))

#vl.7 : irecv

!KD(aenc(<'resp', x.10>, pk(~ltkA.24)))

!KD(aenc(<'resp', x.10>, pk(~ltkA.24))) !KU(~ltkA.24)

#vr.13 : d_0_adec

!KD(<'resp', x.10>)

!Ltk($A.21,
 ~ltkA.21
)

In(aenc(<'req', $A.24, x.10>, pk(~ltkA.21))
)

!Pk($A.24,
 pk(~ltkA.24)
)

#vr.9 : Rule_R

Out(aenc(<'resp', x.10>, pk(~ltkA.24)))

!KU(aenc(<'req', $A.24, x.10>, pk(~ltkA.21)))

#vf.11 : isend[K(aenc(<'req', $A.24, x.10>, pk(~ltkA.21)))]

In(aenc(<'req', $A.24, x.10>, pk(~ltkA.21)))

!KD(<'resp', x.10>)

#vr.17 : d_0_snd

!KD(x.10)

Fr(~ltkA.21)

#vr.20 : Register_pk

!Ltk($A.21, ~ltkA.21) !Pk($A.21, pk(~ltkA.21)) Out(pk(~ltkA.21))

#vf.22 : Fresh

Fr(~ltkA.21)

Fr(~ltkA.24)

#vr.23 : Register_pk

!Ltk($A.24, ~ltkA.24) !Pk($A.24, pk(~ltkA.24)) Out(pk(~ltkA.24))

#vf.25 : Fresh

Fr(~ltkA.24)
!KU(aenc(<'req', $A.24, x.10>, pk(~ltkA.21))) @ #vk.12

!KU(~ltkA.24) @ #vk.16

Fig. 8.3: Partial deconstruction (with graph simplification turned off) caused by the
variable x.10 from the input of rule Rule_R

as Tamarin had not yet solved the input of the rule. So potentially, the value could
be an encryption, for example, if the adversary crafted the request message.

Unfortunately, at this point, Tamarin cannot further resolve the deconstruction chain
as currently there only is a variable, so it cannot decide whether the variable actually
is an encryption or not. Tamarin also cannot resolve the situation by solving the
input (to get more information about the real value), because doing this in general
might cause non-termination of the precomputations.

At this point we can step in and help Tamarin eliminate the partial deconstruction. To
do this, we write a sources lemma that specifies the different possible inputs, giving
Tamarin sufficient information to completely resolve the open chain. In this concrete
example, there are actually not many possible cases:

• Either the input was the expected protocol message coming from the initiator, in
which case we have a fresh value, or

• the adversary crafted a message of the right format. In this case, however, it is of
no interest for the adversary to extract x.10 again because the adversary already

138 8 Pre-computation and Deconstructions

knew it before (as it created the ciphertext itself). So Tamarin can eliminate this
case, independently of the concrete value for x.10.

We now need to express this as a lemma, given in the full file sourcesWithLemma.spthy.
We start by adding an action In_R(m1, x) to the rule Rule_R so we can refer to the
input message m1 and the variable x causing the partial deconstruction.
rule Rule_R:

let m1 = aenc{'req', I, x}pk(ltkR)
m2 = aenc{'resp', x}pkI

in
[!Ltk(R, ltkR), In(m1), !Pk(I, pkI)]

--[In_R(m1, x)]->
[Out(m2)]

We also need an action Out_I(m1) for the corresponding output of m1 in Rule_I_1.
rule Rule_I_1:

let m1 = aenc{'req', $I, ~n}pkR
in

[Fr(~n), !Pk(R, pkR), !Ltk($I, ltkI)]
--[SecretI($I,R,~n), Out_I(m1)]->

[Out(m1), State_I($I, R, ~n, pkR, ltkI)]

Using these two actions we can now write the sources lemma as follows.
lemma sources [sources]:

"All #i m x. In_R(m, x)@#i ==> (
(Ex #j. Out_I(m)@#j & #j < #i)
|

(Ex #k. KU(x)@#k & #k < #i)
)

"

This expresses what we intuitively formulated above: when receiving a message m
with variable x in rule Rule_R, then either this was the output of an initiator in rule
Rule_I_1, or the adversary knew x before.

Note that in this lemma we use KU and not K to reason about the values previously
known by the adversary. The reason for this is that the K annotation is only present on the
isend rule. In the above example (see Figure 8.3), even if the adversary constructed the
input aenc(<’req’, $A.24, x.10>, pk(ltkA.21)) to rule Rule_R by itself,
i.e., it knows $A.24 and x.10 individually, there will be no K($A.24) and K(x.10)
actions, but only a K(aenc(<’req’, $A.24, x.10>, pk(~ltkA.21)))
action. However, there will be KU($A.24) and KU(x.10) actions, as all
construction rules have KU annotations. Note that there will also be a
KU(aenc(<’req’, $A.24, x.10>, pk(~ltkA.21))) action, as the aenc
constructor also has a KU annotation. For more details on the adversary deduction,
see Section 6.8, and for recommendations on when to use KU, see Section 11.8.2.

When adding this lemma to the theory, Tamarin can solve all partial deconstructions,
and verify the secrecy of the nonce as stated above. The added sources lemma itself
must also be proven, and Tamarin can successfully discharge that as well.

8.4 Using sources lemmas 139

If there are multiple rules or inputs causing partial deconstructions, one must write a
lemma for each of them. In this case, it is advisable to merge all lemmas into one
large lemma at the end, by simply connecting the formulas using a logical AND (&).
This large lemma is usually easier for Tamarin to prove as the induction hypothesis
becomes stronger (it can use the formula for all other rules when proving one of
them), and it prevents the partial deconstructions from one input to interfere with the
proofs of source lemmas for other inputs.

Overall, the approach is as follows:

1. Identify the rules, messages and variables causing the partial deconstructions, by
inspecting the raw sources

2. For each message input, look for matching outputs

3. Add the necessary actions to the rules (for inputs and outputs)

4. Add the sources lemma to the theory

Tamarin’s auto-sources feature (see Section 8.3) implements the same approach, but
might fail in some cases, in particular in the presence of complex equational theories.
Then, one can try to manually write a suitable sources lemma.

When manually writing a sources lemma it can sometimes be helpful to write it
incrementally: look at a first partial deconstruction, write a lemma for it, re-run
Tamarin to check which partial deconstructions remain, extend the lemma to cover
the next partial deconstruction, and so on.

For the theory behind partial deconstructions and sources lemmas in Tamarin, see
Chapter 8.4.4 in [88]. For details on the algorithm that automatically generates sources
lemmas, see [37, 38].

Chapter 9

Lemma Annotations

Annotations can be associated with a lemma declaration using square brackets
after the lemma name, for example, lemma example [use_induction]. Adding
annotations can change how a lemma is proven, e.g., by using induction as in the
example just given. Annotations can also specify that a lemma is an auxiliary lemma,
intended to be reused in the proof of other lemmas. Moreover, as we have seen
in Chapter 8, a sources annotated lemma is proven using induction and the sources
lemma additionally changes the sources used for all other proofs.

In this chapter, we explain the use of the lemma annotations use_induction,
reuse, and hide_lemma. There is a further lemma annotation heuristic to specify
lemma-specific heuristics, which we will return to in Section 16.4. In equivalence
mode, lemmas can also be annotated with left, right, or both, as explained in
Section 13.1.

9.1 Induction

For all the examples seen so far, with the exception of sources lemmas, the proofs
constructed have not required any form of induction. We now turn to Tamarin’s
support for this important reasoning principle. Induction is often needed, for example,
to prove properties of protocol models whose rules can be linked together in a looping
fashion. For such models, an attempted proof without induction will typically not
terminate.

To prove a given property with induction, one adds the use_induction annota-
tion to the lemma name. Alternatively, using the GUI, one can manually select
use_induction as the first step without annotating the lemma.

Abstractly, one can think of Tamarin’s induction as a form of induction on the length
of the trace, where the induction hypothesis is assumed for all time points except for
the last one, which must be proven. When using induction, an associated constraint

141

142 9 Lemma Annotations

system is generated that results in an initial case split with two subcases: (i) the empty
trace and (ii) any other trace.

In subcase (i), Tamarin must establish the property for the base case, i.e., the empty
constraint system. In subcase (ii), the induction distinguishes the last timepoint, so
that all other time points happen earlier. The induction hypothesis then states that the
property can be assumed for all other (earlier) non-last timepoints. Tamarin then
needs to prove that the property also holds for the last timepoint, via the constraint
system. If the constraint system can be solved, then we have proven the property for
the last timepoint and Tamarin can conclude subcase (ii). If both subcases are
established then, by the soundness of the induction rule, the property holds in general.
For details of the correctness of this proof method, see [88], which also contains the
detailed constraint reduction rules for induction.

Let us consider an example, abbreviated from [88], which showcases some lem-
mas that Tamarin requires induction to prove, with the file available at Mini-
mal_Loop_induction.spthy.
theory Minimal_Loop_Example begin

rule Start: [Fr(x)] --[Start(x)]-> [A(x)]

rule Loop: [A(x)] --[Loop(x)]-> [A(x)]

lemma Start_before_Loop [reuse, use_induction]:
"All x #j. Loop(x) @ j ==> (Ex #i. Start(x) @ i & i < j)"

lemma Satisfied_by_empty_trace_only [use_induction]:
exists-trace
"All x #j. Loop(x) @ j ==> F"

end

Induction is needed to prove the lemma Start_before_Loop (hence it is annotated
with use_induction) in this example as each Loop instance has a predecessor that
is either the Start (and we are done, as that satisfies the formula), or another Loop
instance. Using the previously described proof steps without induction, Tamarin will
unroll an infinitely long chain of Loop instances without terminating, as we explain
below.

A(x)

#j : Loop[Loop(x)]

A(x)

Fig. 9.1: Starting point

When Tamarin analyzes the lemma Start_before_Loop, it starts the constraint
solving with the formula representing that we are done once a Start with the right

9.1 Induction 143

parameter is found, as well as the formula that there is a Loop with the parameter.
That second formula is resolved into the first system in Figure 9.1.

Afterwards, two steps are possible. First, if the A comes from an instance of the
Start rule, see Figure 9.2, we are immediately done, having found a Start. The
other possibility is that it comes from an instance of the Loop rule, see Figure 9.3.

A(~n)

#j : Loop[Loop(~n)]

A(~n)

Fr(~n)

#vr : Start[Start(~n)]

A(~n)

Fig. 9.2: Closed with a Start

A(x)

#j : Loop[Loop(x)]

A(x)

A(x)

#vr : Loop[Loop(x)]

A(x)

Fig. 9.3: Continued with a Loop

From this second state, we have the same two steps again, closing in Figure 9.4, and
looping in Figure 9.5. This illustrates that the example lemma will not be provable
with the normal constraint solving, and induction is therefore needed.

A(~n)

#j : Loop[Loop(~n)]

A(~n)

A(~n)

#vr : Loop[Loop(~n)]

A(~n)

Fr(~n)

#vr.1 : Start[Start(~n)]

A(~n)

Fig. 9.4: Closed with a Start

A(x)

#j : Loop[Loop(x)]

A(x)

A(x)

#vr : Loop[Loop(x)]

A(x)

A(x)

#vr.1 : Loop[Loop(x)]

A(x)

Fig. 9.5: Continued with a Loop again

Using the induction proof method, Tamarin’s approach is different from what we
have just described. Most cases are still treated and resolved as before. However, the
cases have additional information about the induction hypothesis that can be applied
to all non-last timepoints. In particular, this happens in the previous non-terminating

144 9 Lemma Annotations

loop. Once there are two instances of Loop connected to each other, the first of the
two is non-last, so the induction hypothesis applies. Hence, for this Loop instance, a
Start exists, and thus the proof is completed, as only one Start is required overall,
see Figure 9.6. Note that the addition of the Start with the dotted line comes from
the application of the induction hypothesis.

Fr(~n)

#i : Start[Start(~n)]

A(~n)

A(~n)

#vr : Loop[Loop(~n)]

A(~n)

A(~n)

#j : Loop[Loop(~n)]

A(~n)

#j

Fig. 9.6: Inductive step

In general, when proving a lemma with induction, one must take care that the induction
hypothesis is sufficiently strong for the proof to succeed. In particular, it can be useful
to merge different sources lemmas (or other lemmas proven by induction, see also
the next section) into one, so that the induction hypothesis becomes stronger; see the
discussion in Section 8.4. The same can be true when proving multiple implications.
Namely, it may be advantageous to prove a lemma stating (A | B | C) ==> D for
some formulas A, B, and C, rather than proving three lemmas A ==> D, B ==> D,
and C ==> D, as this strengthens the induction hypothesis; see [49] for an example.

9.2 Reuse and hiding

The reuse annotation does not influence how the annotated lemma is proven. Instead,
lemmas with this annotation are used as hypotheses in proof steps when proving
subsequent lemmas. For reuse, the order that lemmas occur in the input file matters,
and any lemma name annotated with reuse is used in all subsequently occurring
lemmas (except for sources lemmas, which do not use reuse lemmas to avoid
possible circularity). This behavior is different from sources lemmas, which affect

9.3 An example: a simple hash chain 145

the precomputations and thus indirectly the analysis of all lemmas, independent of
their location in the input file.

Lemmas annotated with reuse can be used to prove properties about a protocol,
often invariants, that subsequently help to prove the main properties of interest. For a
larger example combining reuse and induction see Section 9.3.

A reuse lemma is applied in the subsequent proofs, regardless of whether it has
already been successfully verified or not. This makes it convenient for the user, who
can then verify lemmas independently from each other. This is especially useful
when the reuse lemma has been proven in a prior Tamarin run and one then adds
additional lemmas. This way, one need not re-prove the reuse lemma (which may
be time consuming) with each addition.

Of course, with the above approach, one risks that a reuse lemma is never proven
or, even worse, that the lemma is incorrect. In this case, all subsequent proofs may
be incorrect. Hence, when proving a lemma, it is the user’s obligation to ensure that
all prior reuse lemmas have also been proven (or are provable). Without checking
this, no guarantees result from Tamarin proving a lemma that may be reusing prior,
unprovable, reuse lemmas.

Reuse lemmas do not always reduce proof search and their use may sometimes
lead the proof of other lemmas astray by creating unneeded loops. It is therefore
possible to disable the use of a given reuse lemma. For example, to disable the reuse
lemma called NAME when proving some other lemma, one can add the annotation
hide_lemma=NAME to the other lemma. All previous reuse lemmas not hidden in
this way will be used in the proof.

Naturally, one can combine the different annotations. For example, one may prove a
reuse lemma using induction, while hiding another previous reuse lemma. All the
annotations are given as a comma-separated list inside square brackets.

9.3 An example: a simple hash chain

In this example, the property we want to show is not immediately verifiable by
Tamarin. We must first state an auxiliary reuse lemma and prove this lemma using
induction.

Our example, given in Minimal_HashChain.spthy, models a simple hash chain. It
can be seen as a precursor to protocols like TESLA [97]. The idea of the TESLA
protocol is to authenticate broadcast messages, which are sent to multiple recipients
simultaneously. The sender starts by computing a chain of hash values by repeatedly
applying a hash function to an initial value, say up to 𝑛 times. The sender then uses
the resulting values in reverse order, essentially as keys for a MAC. This means the
sender starts by releasing the result of hashing the value 𝑛 times. Then it releases the
result of hashing the value 𝑛 − 1 times, etc. This allows the recipient to easily check

146 9 Lemma Annotations

that hashing the latest received value results in the previously received value, linking
the two values. However, an adversary cannot inject packets easily, as it would have
to be able to compute the pre-image of a hash, which is assumed to be hard, as usual.
Note that protocols like this are intended for use with low-power devices. Thus, it uses
symmetric encryption rather than signatures or other more complex mechanisms.

The protocol model we present now models repeated hashing by repeated application
of a function f(·) to an argument. There are three rules to start, step, and stop a
chain of applications of the hash function to a fresh seed value. The seed value is
also output to the adversary. In the step rule, the current value is hashed and stored,
while a ChainKey action is produced for the current value. In the stop rule, a last
ChainKey action is logged, and a persistent end fact, called !Final(·) is added to
the state. The intermediate values are henceforth referred to as keys.
// Hash chain generation
rule Gen_Start:

[Fr(seed)] -->
[Gen(seed, seed)
, Out(seed)]

// The ChainKey-facts are used by the sender rules to store the
// link between the keys in the chain.
rule Gen_Step:

[Gen(seed, chain)]
--[ChainKey(chain)]->

[Gen(seed, f(chain))]

// At some point the sender decides to stop the hash-chain
// precomputation.
rule Gen_Stop:

[Gen(seed, kZero)]
--[ChainKey(kZero)]->

[!Final(kZero)]

Then, for any arbitrary key, Tamarin can check whether it was part of such a
previously computed chain. This is the case when one can start with the Check0
rule, take steps by applying the hash function in the rule Check, and finish with rule
Success if the reached value is the one stored in a !Final(·) state fact.
// Start checking an arbitrary key. Use a loop-id to allow
// connecting different statements about the same loop.
rule Check0:

[In(kOrig)
, Fr(loopId)]

--[Start(loopId, kOrig)]->
[Loop(loopId, kOrig, kOrig)]

rule Check:
[Loop(loopId, k, kOrig)]

--[Loop(loopId, k, kOrig)]->
[Loop(loopId, f(k), kOrig)]

rule Success:
[Loop(loopId, kZero, kOrig), !Final(kZero)]

--[Success(loopId, kOrig)

9.3 An example: a simple hash chain 147

]-> []

We would now like to prove the following lemma. It states that if there is Success
for some loop id and associated starting key value, then that starting key value has a
ChainKey action in the trace, meaning it was actually part of a previously generated
hash chain (the ChainKey actions are emitted by the generation rules).
lemma Success_chain:

"All lid k #i. Success(lid, k) @ i ==>
Ex #j. ChainKey(k) @ j"

Unfortunately, a direct proof of this lemma fails, as Tamarin would end up in a loop
when trying to unroll the hash chain, which can be arbitrary long (this is analogous to
the small example from Section 9.1). Attempting to prove this lemma with induction
also fails because the Success action for this loop id will only ever appear once per
hash chain and only at the end. Thus, the induction hypothesis is never applicable, as
there is no Success action.

A solution is to prove an auxiliary lemma. To be able to prove something about
the hash chain, we must reason about the looping actions used in this part of the
model, i.e., Loop and ChainKey. When looking at the rule Success, we can see
that the Success(lid, k) action from lemma Success_chain directly requires
the premises Loop(lid, kZero, k) and !Final(kZero) to exist. From there, the
lemma must show that a ChainKey(k) action exists in the trace. We can try to simply
state this as an auxiliary lemma, using actions Loop (there is one for each created
Loop fact) and ChainKey (which is created when producing the !Final(kZero)
fact in rule Gen_Stop).
lemma Auxiliary_Success_chain [use_induction,reuse]:

"All lid kZero k #x #y.
Loop(lid, kZero, k) @ #x & ChainKey(kZero) @ #y

==> Ex #z. ChainKey(k) @ #z"

We declare this lemma to be a reuse lemma and insert it before the lemma
Success_chain so that it can be used to prove that lemma. Moreover, the auxiliary
lemma must be proven using induction as we have an arbitrarily long hash chain and
Tamarin will enter a loop otherwise; hence we add the option use_induction.

Tamarin now succeeds in proving this lemma, as we talk about the actions actually
appearing on each step of the hash chain, and the induction hypothesis can be applied.
Moreover, this additional hypothesis is sufficient to prove our main lemma (and
without induction).

Part IV

Using Tamarin in Practice

Chapter 10

Basic Modeling

In previous sections, we examined the foundations of modeling security protocols and
how Tamarin reasons about these models. We now turn to tradeoffs in modeling, that
is choosing between different options when modeling protocols or formalizing their
properties. We also consider some pitfalls that newcomers to Tamarin should avoid.
We note in this regard that there is often no one, specific, best modeling approach.
However, there are certain standard patterns that have proven useful in practice, which
we present in this section.

10.1 Modeling with state facts

We have previously explained state facts, which store the state of each agent’s runs.
We also use state facts to store the information available to the parties executing the
protocol, for example information on the public key Infrastructure that they use to
look up keys. Note that Tamarin internally uses state facts to model the adversary’s
knowledge and to augment this knowledge using built-in rules that describe the kinds
of knowledge deductions the adversary can make, as described in Section 6.8. In
what follows, we give concrete recommendations to the modeler on how to use state
facts when modeling protocols, for each individual agent.

10.1.1 Standard modeling conventions

Usually a protocol requires agents to take multiple steps during their execution. An
agent’s state stores all values that the agent has access to, and the progress that it has
made so far. For an agent whose role consists of a linear sequence of steps, i.e., one
without branching into or out of the sequence, the standard way to represent this is as
follows.

151

152 10 Basic Modeling

Calling the role abstractly 𝑅𝑜𝑙𝑒, we can write Role('n', ...) for the 𝑛-th state
of this agent, or alternatively and more simply Role_n(...). In the former case,
the modeler should ensure that the number 𝑛, given as an argument, is incremented
in each transition involving this state fact. In the latter case, the modeler should
transform Role_n(...) to Role_n+1(...). In both cases, the actual data available
to the agent is stored as the fact’s arguments, elided above.

10.1.2 Variables and their scope

Variable names are local: their scope is limited to the rule in which they appear. Hence
the same variable name can be reused in multiple rules, and variable instantiations in
one rule have no effect on the other rules. This is in contrast, for example, to how
variables are used in imperative programs where a variable is assigned a value and
keeps that value until the variable is subsequently reassigned. The full example file is
available at VariableNamesAndLet.spthy.

To exemplify the use of variables, consider the following two rules.
rule CreateVarA:

[Fr(~tid), In(<X,Y>)]
--[]->

[State(~tid, $A), S(<X,Y>)]

rule UseVarA:
[State(id, B), S(<Y,X>)]

--[]->
[]

The first rule creates a State fact with two arguments, and the second rule consumes
this fact, where id will be unified with ~tid and B will be unified with $A. For ease of
readability, one often uses the same variable names, but that is neither necessary nor
does it connect them a priori. In fact, internally Tamarin will name apart variables
from different rules prior to attempting to unify the rules.

In this example, the S fact also has two arguments. These are named X and Y in the
first rule, and Y and X in the second rule. This could lead to the perception that this is
specifying a swap, but we see that this is not the case. Looking at the rules in detail,
we see that the second rule is applied to the state resulting from the first rule. The
result is that the value of Y of the second rule will be what was in X from the first
rule. Similarly, the value of X from the second rule will be that of the value of Y
from the first rule. The values are fixed by their argument position in S, rather than
the variable names representing them. This example illustrates that using the same
variable name in multiple rules has no effect, i.e., variables are indeed local. However,
for readability, it is generally preferable to use the same names for the same terms
whenever possible.

10.1 Modeling with state facts 153

10.1.3 Using public variables and constants

Recall from Section 3.1.2 that public variables are those variables prefixed with a $.
Any rule can create public variables as these variables can be used on the right-hand
side of rules without having to appear on the left-hand side. Furthermore, two different
public variables may or may not be the same, meaning that $A and $B can be the same
agent or, respectively, different agents. However, public constants, written as quoted
strings like 'name', are fixed. Note that a public variable can be instantiated with
a public constant as explained in Section 3.1.2. Two syntactically different public
constants like 'name' and 'name2' are always distinct.

A standard use of public constants in protocol descriptions is to tag protocol messages,
so that the first message of a protocol is never mistaken for the second as they cannot
be unified. Of course, this assumes that the adversary cannot change the tags, i.e.,
they are authenticated in some way to prevent this.

For public variables, the adversary knows all possible values they can take. Further-
more, the adversary also knows all public constants. There is no need for the adversary
to learn them from any output first and the adversary can use them at any time.

10.1.4 Using fresh values

Fresh values are used to model keys, nonces, and other secrets or unique values.
There is a single distinguished rule creating fresh values, the so-called Fresh rule,
which embeds a new fresh value as argument in the conclusion fact Fr(·) it produces.
Tamarin ensures that each instance of the Fresh rule produces a different value,
making all values unique, and unguessable for the adversary. All other rules can only
use fresh values that they know and this can happen in one of three ways:

• Use a fresh value from a Fr(·) fact.
• Use a state fact that has one or more fresh values as arguments.
• Receive a fresh value from the network in an In(·) fact.

In the first case, the agent can now use the fresh value and be sure that no other agent
knows the value, unless it sends out the value in some way. In the second case, all
fresh values are either originally created by this agent, or received from the network
(and thus potentially from the adversary). In the second and third case, the agent
cannot be sure that the value is truly fresh. The adversary can of course also consume
Fr(·) facts in its rules, thus learning fresh values that no one else knows.

The type annotation ~ can be used to indicate that a variable is of type fresh. In this
case, it can only be instantiated using fresh values.

For rules that use a Fr(x) fact, Tamarin automatically adds the fresh type to x,
so it will be represented as ~x, irrespective of whether the modeler used the type

154 10 Basic Modeling

annotation or not. In all other cases, the decision whether to add the annotation or not
can influence the model’s traces, as explained in the next section.

10.1.5 Effects of type annotations

Type annotations on the left-hand side of rules limit their applicability. Expecting a
$A parameter in a state fact in the left-hand side of a rule means the rule can only be
triggered if the state fact contains a public value in that position (thereby excluding
compound terms, function applications, or fresh values). Similarly, if a public variable
is used inside a pattern that is matching an input, the rule can only be triggered if the
input contains a public value at that position. Thus, this type annotation can have an
influence on a model’s traces, and one should make sure that it is realistic for the
agent receiving the input to be able to check whether the value in that position is
actually a public value, or remove the type annotation to be sure not to miss attacks.

Similarly for a fresh ~x variable, if it occurs in a state fact on the left-hand side of a
rule, then the rule can only be triggered with an instance of that state fact with a fresh
value in that position.

In practice, for fresh values generated locally by an agent and stored inside a state fact,
one can add the type annotation even for rules consuming this fact. This is without
any risk of limiting the rules’ applicability, as one can be sure that there will always be
a fresh value in that position. When no annotation is given, Tamarin may sometimes
add it itself in the computed sources during pre-computation. It does so whenever it
finds that all ways to create a fact actually have a fresh value in that position, thus
ensuring no mistake.

Adding a ~ type annotation to a variable inside an input is more delicate, as this
means that the agent receiving this input actually has a way of checking that this value
is fresh, and not anything else. This may be reasonable when the agent already knows
the value and knows that it is fresh, e.g., as it is stored in its state and is then also
received and compared. However, when the agent learns a new value, it is a strong
assumption on the overall setup to annotate this as fresh, as in practice it is typically
not possible to check whether a value is really random. Adding this annotation in this
case essentially assumes that the agent can distinguish fresh values from reused, or
otherwise arbitrary, values.

Consider the following example.

Example 16 (Simple Challenge Response Protocol, again)

Consider the following example from Chapter 4:
rule Register_pk:

[Fr(~ltk)]
-->
[!Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk))]

10.1 Modeling with state facts 155

rule Client_1:
[Fr(~k), !Pk($S, pkS)]

-->
[Client_1($S, ~k), Out(aenc{'1', ~k}pkS)]

rule Client_2:
[Client_1(S, k), In(h(k))]

--[SessKeyC(S, k)]->
[]

rule Serv_1:
[!Ltk($S, ~ltkS), In(aenc{'1', k}pk(~ltkS))]

--[AnswerRequest($S, k)
]->
[Out(h(k))]

In the rule Client_2, one could replace S by $S, and k by ~k without changing the
model’s traces as both values necessarily come from the fact Client_1. This fact is
only produced by the rule Client_1. Hence we can be sure that the two values are
of the respective types. In contrast, in Serv_1, replacing k by ~k would change the
model’s traces. This modification would entail that this rule could only be triggered
if k is a fresh value, although in reality it would be impossible for the server to check
whether the new key received is actually freshly generated. Hence, by making this
change, one could potentially miss attacks where the adversary manages to trigger
this rule using other, non-fresh, values.

Inside formulas the type annotations $ and ~ are forbidden, and if they are used
Tamarin will give an error. Formulas can only use untyped variables, and variables
of type timepoint, prefixed with a #. Timepoint variables can only be used in formulas,
and not in rules.

10.1.6 Pattern matching versus explicit deconstructors

There are two different ways to handle received messages in rules, where the receiving
agent intends to perform some operation on them, such as decryption or checking a
signature or a format with a tag. One can either use pattern matching, or an explicit
deconstructor, combined with restrictions if necessary.

In principle, these two approaches have the same expressiveness, but there are some
subtleties regarding their semantics. These subtleties consider both the applicability
of the rules and the computations that can be modeled.

To illustrate the first point, consider decryption, with the full example file available
at PatternMatchingVSExplicitDeconstructor.spthy. Recall the standard equational theory
for symmetric encryption and decryption.
functions: senc/2, sdec/2
equations: sdec(senc(m,k),k)=m

156 10 Basic Modeling

A rule can either apply pattern matching (the first rule below) or explicitly use the
deconstructor sdec (the second rule below). Pattern matching is the process of
finding a substitution on variables such that the terms are equal, where equality here
is defined modulo the equational theory.
rule decrypt_pattern_matching:

[!Key(k), In(senc(m,k))]
--[Received(m)]->

[]

rule decrypt_explicit_deconstructor:
[!Key(k), In(msg)]

--[Received(sdec(msg,k))]->
[]

The difference is that, in the first rule, the received term must be a correctly computed
encryption under the known key k, while in the second rule anything is accepted and
the decryption function with the known key is applied, even if this computation does
not yield a meaningful result. Note that, in this use of the explicit deconstructor, the
received message need not even be an encryption. Any message would be accepted.
Hence, this modeling would be appropriate for those cases where the receiver cannot
check whether the decryption is successful or not.

In contrast, for the pattern matching rule, the received message must have the right
format. This means that, for the pattern-matching version, a decryption failure (say,
due to a mismatch of the encryption and decryption key) is immediately visible to the
agent, while the explicit deconstructor can always be applied. This modeling would
thus be appropriate in case the receiver can (and does) check whether the decryption
is successful or not.

This difference is clearly visible when looking at the variants (see Section 6.7)
Tamarin computes for both rules.
rule (modulo AC) decrypt_pattern_matching:

[!Key(k), In(senc(m, k))] --[Received(m)]-> []

rule (modulo AC) decrypt_explicit_deconstructor:
[!Key(k), In(msg)] --[Received(z)]-> []

variants (modulo AC)
1. k = k.4

msg = msg.4
z = sdec(msg.4, k.4)

2. k = x.4
msg = senc(x.5, x.4)
z = x.5

The pattern matching rule only has one variant, where the input is a correct encryption
using the key k, whereas the explicit deconstructor version has a second variant (with
number 1 here), corresponding to the case where the input is of a different form.

One can ensure that decryption was successful when using the explicit deconstructor,
for example by having a tagged message of the form <'1', msg>. The receiver can

10.1 Modeling with state facts 157

then decrypt, unpair, and check that the resulting term is a '1' with the Equality
restriction Eq given previously and used as follows.
rule decrypt_explicit_destructor_success:

[!Key(k), In(msg)]
--[Eq(fst(sdec(msg,k)),'1')

, Received(snd(sdec(msg,k)))]->
[]

This approach can become cumbersome though. Moreover, using pattern matching
also typically results in better performance. However, for some scenarios the use of
explicit deconstructors rather than pattern matching is required, see Chapter 15.

Another (semantic) difference between pattern matching and explicit deconstructors
concerns the computable functions. Using pattern-matching, it is possible (on purpose
or by accident) to give normal agents capabilities that are not given to the adversary by
the equational theory, which can be problematic. For example, when receiving a value
that is expected to be a hash, with pattern-matching the receiver’s rule can match on
In(h(X)), which thus learns and stores the value X. However, this is inappropriate
for a cryptographic hash function as it specifically prevents (easy) computation of the
pre-image of its result, and there is no explicit deconstructor and equation allowing
this.

To help users use pattern matching correctly, i.e., to prevent mistakes like specifying
unrealistic computations, Tamarin reports warnings for this. To be precise, whenever
the rules derive values that would not be derivable using the equational theory for
the adversary with the same knowledge, then this is reported. For example, consider
receiving a message from the network and pattern-matching it as h(X) in a protocol
rule, when the agent acting does not know X already. Then this pattern matching gives
the agent the power to invert the function h. The adversary cannot do that, unless an
equation allows extraction of values under that function h. This check is activated by
default. The flag to turn this feature off, respectively edit its time-out, is called -d (or
--derivcheck-timeout). By default, the time-out is 5 seconds. Setting the value
to 0 turns the feature off, and other values set the timeout.

Finally pattern matching can be used to implement certain checks which are difficult
to model otherwise. When this can be justified, the warning can be ignored, or even
deactivated. For example, a group element check in Diffie-Hellman protocols, which
verifies whether a received value is actually an element of the current group, can be
modeled using pattern matching.
rule group_element_check:
[In('g'^x) , ...] --> [...]

// here 'g' is the generator

In this rule, the input only matches values that are powers of the generator, i.e.,
group elements. Of course, Tamarin will also raise a warning here, but that can be
ignored, so long as a group element check is possible (and done) in practice for the
used Diffie-Hellman implementation. To deactivate the warning, one can add the
no_derivcheck annotation to the rule as follows.

158 10 Basic Modeling

rule group_element_check [no_derivcheck]:
[In('g'^x) , ...] --> [...]

// here 'g' is the generator

Tamarin then no longer performs the check for this rule. All other rules will still be
checked.

Apart from the above semantic differences, there is a more stylistic difference between
pattern matching and explicit deconstructors. When using pattern matching, the
equational theory is in some sense hard-coded into the rules, and any changes require
updating all rules accordingly. In case of explicit deconstructors, changing an equation
or a function does not necessarily require updating any of the rules.

10.1.7 Fact symbols with injective instances

Tamarin has built-in support for reasoning about facts whose instances are always
unique. At the end of this subsection we explain how to make use of these in practice.
We call such facts injective fact symbols (or injective facts for short). In principle,
such facts can appear in many different forms, but are then quite hard to detect,
so Tamarin limits itself to a specific subset. Namely, Tamarin detects injective
facts that have a fresh value at the first argument position of each instance, and are
constructed and consumed in a way that ensures the uniqueness of their instances.
Specifically, an injective fact is one where all instances of the fact F(~x, ...) come
from either an initialization rule that creates this fact with an actual fresh fact Fr(~x)
in its premise, or from a rule that has just consumed and again produced it. When
this is the case, the uniqueness of the instances follows, i.e., there can only be at most
one copy of this fact with this fresh identifier in the system at any time.

For example, consider the following two rules from the example file at MinimalInjec-
tiveFact.spthy:

rule Init:
[Fr(~i)]

--[Initiated(~i)]->
[Inj(~i, $Z)]

rule Reader:
[Inj(i, $Z)]

--[Read(i, $Z)]->
[Inj(i, $Z)]

In this example, the Inj fact is injective because, for each i, there can be at most one
Inj(i,_) fact in the system at any time. This might not be the case, for example, if
there was a rule with two instances of Inj on its right-hand side, or if ~i was not
freshly generated in the Init rule.

10.1 Modeling with state facts 159

Injective facts arise in various practical scenarios, for example, when modeling a
database with mutable data. The data fields are represented by an injective fact, using
a fresh value as index in the first argument, and data in other argument positions.

Note that identifying whether a fact symbol is injective is, in general, undecidable.
This is why Tamarin applies the above heuristic in a best-effort manner to detect
them. When such facts are detected then specialized reasoning (described below) is
applied. Note that this special reasoning is only needed when a fact is both consumed
and produced in a rule. Facts that are only consumed are already handled by the
standard heuristics.

You can check if Tamarin detected that your theory contains injective facts by
inspecting the loaded theory in the GUI. To do this, click on “Multiset rewriting rules”
and look at the top of the right-hand pane. There you will see the names of all such
detected facts underneath “Fact Symbols with Injective Instances”, with “id” as their
first argument, if there are any. For example, for the preceding two rules, this yields:

theory MinimalInjectiveFact begin

Message theory

Multiset rewriting rules (4)

Tactic(s)

Raw sources (4 cases, deconstructions complete)

Refined sources (4 cases, deconstructions complete)

lemma injectivity:
 all-traces
 "∀ id #i #j Z1 Z2.
 ((Read(id, Z1) @ #i) ∧ (Read(id, Z2) @ #j)) ⇒ (Z1 =
by sorry

end

Proof scripts

Fact Symbols with Injective Instances

Inj(id,=)

Multiset Rewriting Rules

rule (modulo AC) isend:
 [!KU(x)] --[K(x)]-> [In(x)]

 rule (modulo AC) irecv:
 [Out(x)] --> [!KD(x)]

 rule (modulo AC) Init:
 [Fr(~i)] --[Initiated(~i)]-> [Inj(~i, $Z)]

 rule (modulo AC) Reader:
 [Inj(i, $Z)] --[Read(i, $Z)]-> [Inj(i, $Z)]
 // loop breaker: [0]

Multiset rewriting rules and restrictions

Running TAMARIN 1.10.0 Index Download Actions » Options »

In the screenshot, Tamarin displays that it detected that Inj is an injective fact and
additionally that the second argument of this injective fact never changes, which is
indicated by the equal sign in the second argument position.

We next consider the following simple lemma for the theory with the Init and
Reader rules.

lemma injectivity: all-traces
"All id #i #j Z1 Z2.

Read(id, Z1) @ i & Read(id, Z2) @ j ==> Z1 = Z2 "

If we would try to prove this lemma automatically using the proof techniques presented
thus far, the proof would not terminate. To construct a counterexample, Tamarin
would first consider two instances of the Reader rule with the same ~i but different
$Z and then consider two parallel, ever-growing, backwards chains of Reader rule
instances, without ever realizing that this cannot occur in this system. However, by
detecting that Inj is an injective fact, Tamarin can automatically prove this lemma,
using the following reasoning.

For injective facts, Tamarin can optimize its reasoning based on the following
observation. Suppose one rule instance produced an injective fact with a fresh value
at timepoint i, which is consumed in another rule instance at timepoint k. Then any
rule at a timepoint in between, call it j, where i < j < k, cannot consume or produce
this fact with this fresh value. This observation is helpful when Tamarin’s search
has already connected two rules, by having the one at k consuming the fact produced
at i, giving us the information that other instances of this fact with this value must be

160 10 Basic Modeling

before or after, but not between these time points. In this case, Tamarin can apply an
additional constraint reduction rule, which marks this scenario as impossible. It turns
out that this can reduce the overall search space and have a significant impact, also
on Tamarin’s termination. Furthermore, the modeler does not have to do anything
specific for this optimization to be applied when writing their theory file. The only
condition is that the fact needs to have a fresh value at the top level in the first position
(rather than inside a tuple or in later positions).

10.2 Macros and conditional blocks

10.2.1 Local macros

To help reduce modeling errors and also for the modeler’s convenience, one may use
let bindings in rules. A let binding maps variables to terms and is syntactic sugar for
inlining all of the declared mappings into the rule. Let bindings are also local to each
rule, like variable names. Syntactically, they start with the keyword let, followed by
a comma-separated list of triples, each consisting of a variable name, an equal sign,
and the term the variable is mapped to. This is followed by in and then the rule’s
remainder. The bindings are applied from left to right and they may be nested without
needing to repeat the let boilerplate; see the second example below.

We first give a simple example, where we show a rule not using let and after-
wards we give a second equivalent version using let, all available in the full file
at VariableNamesAndLet.spthy.
rule WithoutLetBinding:

[State(id, A), Fr(~x), Fr(~k)]
--[Sent(senc(~x, ~k))]->

[State2(id, A, ~x, ~k), Out(senc(~x,~k))]

rule WithLetBinding:
let msg = senc(~x, ~k)
in
[State(id, A), Fr(~x), Fr(~k)]

--[Sent(msg)]->
[State2(id, A, ~x, ~k), Out(msg)]

When executing Tamarin, the let bindings are inlined. If you examine the
loaded theory associated with this example, you will see that the resulting rules
WithoutLetBinding and WithLetBinding are identical, except for their names.

Our next example involves nested let bindings and it illustrates the order in which the
bindings are applied, which is left to right. So, a variable mapping, once defined, is
used in all subsequent bindings, but not vice versa.
rule ComplicatedLetBinding:

let x = y
y = z

10.2 Macros and conditional blocks 161

w = y
in
[F(x, y, w)]

--[]->
[]

This example highlights that the order in which bindings are given is important.
The bindings are applied to each other sequentially, in the order they are declared.
Afterwards, the resulting mappings are applied simultaneously to the variables in the
rule, as is standard for substitutions, yielding the resulting state fact F(y,z,z). In
particular, x is mapped to y and this is not changed by the y=z following it. However,
the last binding, w=y, is changed, so it maps w to z.

We present a final example that illustrates the use of let bindings to construct large
terms and improve the readability of rules.
rule ConsecutiveLetBinding:

let msg = senc(~x, ~k)
triplemsg = <msg,msg,msg>
toolarge = <triplemsg,triplemsg>

in
[State(id, A), Fr(~x), Fr(~k)]

--[Sent(toolarge)]->
[State2(id, A, ~x, ~k), Out(toolarge)]

In this example, the term represented by toolarge amounts to a pair of triples of the
original msg, which is thus repeated six times.

<<senc(~x,~k),senc(~x,~k),senc(~x,~k)>,
senc(~x,~k),senc(~x,~k),senc(~x,~k)>

Note that internally this is represented by repeated use of the pairing operator, but for
readability Tamarin leaves out many of the pairing angle-brackets, as we have seen
before. Recall that the pairing is right-associative, thus the pairings parenthesization
is sufficient here.

10.2.2 Global macros for rules

Tamarin also supports parameterized global macros, which apply to all rules in a
theory. For large protocols, particularly those where large terms are used in multiple
rules, using global macros makes the rules easier to read and write. For example, the
following two rules
rule Client:

[!Ltk($S, ~ltkS), Fr(~m)]
-->

[Out(<$S, aenc(~m, ~ltkS)>)]

rule Serv:
[!Ltk($S, ~ltkS), In(<$S, aenc(req, ~ltkS)>)]

-->
[Out(req)]

162 10 Basic Modeling

can be simplified by using a macro that defines the message format once, and is then
used in both rules. This is available in Macros.spthy

macros: msg1(X, m, key) = <X, aenc(m, key)>

rule Client_1:
[!Ltk($S, ~ltkS), Fr(~m)]

-->
[Out(msg1($S, ~m, ~ltkS))]

rule Serv_1:
[!Ltk($S, ~ltkS), In(msg1($S, req, ~ltkS))]

-->
[Out(req)]

Note that one can define multiple macros separated by commas, and that macros can
have zero or more arguments. Moreover macros can use previously defined macros,
as we illustrate here.
macros: macro1(x) = h(x), macro2(x, y) = senc(x, y), macro3() = $A,

macro4(x, y) = macro2(macro1(x), y)

10.2.3 Conditional blocks and include statements

Sometimes one wants to model different variants of a protocol and ends up with
several models in separate files. To avoid copying and repeating common code,
Tamarin’s internal preprocessor can be used to dynamically activate and deactivate
parts of the model, or to factor out and include common parts from external files.

Tamarin’s internal preprocessor uses cpp preprocessor style commands. We can use
#ifdef KEYWORD followed by the part of the file that one wants to consider only
some of the time, and ending that part with #endif. This part is then included when
calling Tamarin with the command-line argument -DKEYWORD. For example, one
could have a part that is only about executability, given after #ifdef executable,
and pass the argument -Dexecutable when one wants to consider this block. Else
branches are also supported using the command #else, and the #ifdef can contain
simple boolean formulas. Keywords can also be set to true using the command
#define KEYWORD rather than using a command-line argument.

Other files can be included using #include "path/to/file.spthy", where the
path can be absolute or relative to the current file. Included files can again contain
preprocessor commands, and recursively include other files.

The following snippet illustrates the possibilities, available in the file Preprocessor.spthy.
#define KEYWORD1

#ifdef (KEYWORD1 | KEYWORD2) & KEYWORD3

...

10.3 Threat modeling 163

#else

...

#endif

#include "path/to/file.spthy"

10.3 Threat modeling

As explained in Section 1.1, when reasoning about security protocols it is essential to
specify the associated threat model, which formalizes the adversary’s capabilities. For
this reason, this model is also called an adversary model in the literature and in this
book. We explain next how such a model is built as a set of adversary capabilities,
and how these capabilities are expressed using multiset rewriting rules, formalizing
possible adversary actions.

10.3.1 Threat models as sets of capabilities

In many settings, protocols are run over an untrusted network like the Internet,
which itself provides no security guarantees. Here it is natural that the adversary’s
capabilities include message eavesdropping (modeling a passive adversary) and
message spoofing (modeling an active one).

Other capabilities arise from the adversary’s ability to corrupt different parties. In
principle, there are no bounds on the number of agents who can play in different roles,
e.g., in the ISO/IEC protocol examined in Section 2.2, arbitrarily many agents could
be the initiator or responder. In that example we did, however, model the trusted third
party as being a single distinguished agent ’T’. Moreover, not all of these agents
need be honest or have a secure system, e.g., they may intend to be honest but their
systems are under the adversary’s control. So an adversary capability here would be
the ability to corrupt a party, thereby learning all the party’s secrets. This corruption
capability could be formalized as being static, i.e., the corruption occurs at the start
of the protocol, or dynamic, whereby the adversary could compromise parties during
protocol execution.

Working out the threat model is not always easy and it requires domain knowledge
about all the intended contexts where the protocol will be used. If these contexts
are not all known in advance, one may instead formalize a very strong threat model
where the adversary is given many capabilities. If the protocol’s security is provable
with respect to this model, one has the attractive guarantee that the protocol is secure
even when attacked by an adversary with all these capabilities. Moreover, it follows

164 10 Basic Modeling

immediately that the protocol is secure against any weaker adversary too.1 Conversely,
if an attack is found, one can weaken the threat model by removing capabilities until
one reaches a point where the desired properties are provable. In this way, one can
work out the strongest adversary model (or models, see discussion below) under
which the protocol is secure.

It turns out that there is a lattice ordering on threat models, where a threat model
is a set of capabilities and the ordering is the subset ordering. Hence there may
even be multiple, incomparable, strongest threat models, differing in the adversary’s
capabilities. [11] contains a detailed account of how one can classify protocols with
respect to the strength of the adversaries that they resist. We also return to this topic
in Section 17.1.

The threat model itself is formalized by:

1. providing rules that reflect the adversary’s compromise capabilities and

2. conditioning the protocol’s desired properties on the occurrence, or lack thereof,
of different kinds of compromises.

For (1), the rules typically formalize which parts of the global state the adversary
learns. Moreover, when such a rule fires, an appropriately named action is added to
the trace. These actions are used for (2): they provide a way to speak about what
compromises occur (e.g., who has been compromised, what has been compromised,
and when the compromise occurred) in the statement of security lemmas.

We have already seen some examples of this. We gave examples of properties
conditioned on long-term key corruption in Section 5.7. Furthermore, in Section 5.8,
we saw examples of different secrecy properties in the presence of corruption. We
will give a larger example in the next subsection.

Summarizing, the key to constructing the threat model is to formalize the different
adversary capabilities. Common examples are compromising an agent’s long-term
secrets, their session keys, their entire state, or even the random number generator.
This idea is also used in other settings, such as when using the computational model
for cryptographic proofs. In that setting, the compromise of the entire state would be
represented by an oracle, sometimes called session state reveal, that represents that
an adversary might get control of a participant’s computer during a protocol run and
learn that agent’s entire state. With this information, the adversary may thereafter
impersonate the agent and learn the content of other transmitted messages.

1 For properties such as secrecy and agreement, which are safety properties, if they hold for a
protocol model, they will hold for any subset of its behaviors. They will therefore hold when the
adversary has fewer capabilities and hence fewer behaviors.

10.3 Threat modeling 165

10.3.2 An example

We provide an example here of the Naxos protocol from [81], originally modeled
for Tamarin in [102]. In this protocol, the agents combine long-term and ephemeral
secrets into a final key, thereby providing protection against different elements being
revealed.

The Naxos protocol provides strong security guarantees. To express this, it is necessary
to formalize different compromise capabilities for the adversary. Naxos uses both
long-term keys, which are per agent, and short-term keys, so called ephemeral keys,
produced per session per agent. A compromise can then be of an agent’s long-term
keys, the ephemeral keys of certain sessions, or the resulting session keys.

The security property we consider is a notion of key secrecy. This property is
formulated in terms of a distinguished test session and different combinations of ways
that keys can be revealed. In more detail, the test session between two parties is secure
even when both partners reveal the session key of all their other sessions. Moreover,
they can additionally each either reveal the ephemeral key of the test session or their
long-term key, and more. This is called eCK-security. For details on this example and
its modeling in Tamarin see [81, 102].

Here, we focus on how one can add different compromise scenarios to one’s model,
where different kinds of data are revealed. As we have seen, long-term key reveal is
possible using the !Ltk fact created in the public key infrastructure generation rule.
For session state reveal, we must consider the agent state during (or after) execution.
We therefore store that in a way that we can add a reveal rule that can access that
data, but without interfering with the normal protocol execution. For this purpose,
additional state facts are added to the output of rules that contain the ephemeral key
as well as the full resulting session key that was produced, called !Ephk(·,·) and
!Sessk(·,·).

We now show the relevant rules of this model, with the full file available
at NAXOS.spthy.
rule Init_1:

let exI = h1(<~eskI, ~lkI >)
hkI = 'g'^exI

in
[Fr(~eskI), !Ltk($I, ~lkI)]
-->
[Init_1(~eskI, $I, $R, ~lkI, hkI)

, !Ephk(~eskI, ~eskI)
, Out(hkI)]

rule Init_2:
let pkR = 'g'^~lkR

exI = h1(< ~eskI, ~lkI >)
kI = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)

in
[Init_1(~eskI, $I, $R, ~lkI , hkI), !Pk($R, pkR), In(Y)]
--[Accept(~eskI, $I, $R, kI)

166 10 Basic Modeling

, Sid(~eskI, < 'Init', $I, $R, hkI, Y >)
, Match(~eskI, < 'Resp', $R, $I, hkI, Y >)
]->

[!Sessk(~eskI, kI)]

In the initiator rules, in the first rule we have the state fact !Ephk(·,·) and in the
second rule we have !Sessk(·,·), while in the responder rule
rule Resp_1:

let pkI = 'g'^~lkI
exR = h1(< ~eskR, ~lkR >)
hkr = 'g'^exR
kR = h2(< pkI^exR, X^~lkR, X^exR, $I, $R >)

in
[Fr(~eskR), !Ltk($R, ~lkR), !Pk($I, pkI), In(X)]
--[Accept(~eskR, $R, $I, kR)

, Sid(~eskR, <'Resp', $R, $I, X, hkr >)
, Match(~eskR, <'Init', $I, $R, X, hkr>)
]->

[Out(hkr),
!Ephk(~eskR, ~eskR),
!Sessk(~eskR, kR)]

we have both of these facts. Using these facts, we can add the following two reveal
rules.
rule Sessk_reveal:

[!Sessk(~tid, k)] --[SesskRev(~tid)]-> [Out(k)]

rule Ephk_reveal:
[!Ephk(~s, ~ek)] --[EphkRev(~s)]-> [Out(~ek)]

These are in addition to the usual reveal rule for the long-term key.

Using this, we can write a lemma that is conditioned on all relevant combinations
of reveals under which the protocol stays secure, which Tamarin proves for this
protocol and lemma. In general, one could also consider a hierarchy of all possible
combinations of reveals (see Chapter 17) and use Tamarin to determine the strongest
possible combinations of reveals where it is still secure. Here, we only show the one
lemma with maximal reveals.
lemma eCK_key_secrecy:

/*
* If there exists a Test session whose key k is known to the
* Adversary, then...
*/

"(All #i1 #i2 Test A B k.
Accept(Test, A, B, k) @ i1 & K(k) @ i2
==> (
/* ... the Test session must be "not clean".
* Test is not clean if one of the following has happened:
*/

/* 1a. session-key-reveal of test thread. */
(Ex #i3. SesskRev(Test) @ i3)

/* 1b. session-key-reveal of matching session */
| (Ex MatchingSession #i3 #i4 ms.

10.4 Channel types 167

/* (MatchingSession's 'ms' info matches with Test) */
(Sid (MatchingSession, ms) @ i3 & Match(Test, ms) @ i4)

& (
(Ex #i5. SesskRev(MatchingSession) @ i5)

)
)

/* 2. If matching session exists and ... */
| (Ex MatchingSession #i3 #i4 ms.

/* (MatchingSession's 'ms' info matches with Test) */
(Sid (MatchingSession, ms) @ i3 & Match(Test, ms) @ i4)

& (
/* 2a. reveal either both sk_A and esk_A, or */

(Ex #i5 #i6. LtkRev (A) @ i5 & EphkRev (Test) @ i6)
/* 2b. both sk_B and esk_B */
| (Ex #i5 #i6. LtkRev (B) @ i5 & EphkRev (MatchingSession) @ i6)
)
)

/* 3. No matching session exists and ... */
| ((not(Ex MatchingSession #i3 #i4 ms.

/* (MatchingSession's 'ms' info matches with Test) */
Sid (MatchingSession, ms) @ i3 & Match(Test, ms) @ i4))

& (
/* 3a. reveal either sk_B, or */

(Ex #i5 . LtkRev (B) @ i5)
/* 3b. both sk_A and esk_A */
| (Ex #i5 #i6. LtkRev (A) @ i5 & EphkRev (Test) @ i6)
))))"

10.4 Channel types

By default, when using In and Out in Tamarin, we assume an insecure channel
controlled by the adversary. Channels with different properties, i.e., built-in guarantees,
can also be modeled, via state facts. Here, we simply assume that such channels exist
and use them as building blocks for larger models; we do not care how these channels
would be implemented or analyzed.

Possible properties for such channels include authenticity (an “authentic channel”) or
confidentiality (a “confidential channel”), as well as the combination of authenticity
and confidentiality (a “secure channel”). These abstractions remove the need to
use explicit cryptographic constructions (such as encryption and MACs) and key
management for communication between parties in the model. These different kinds
of channels can enable the faster analysis of larger protocols where such channels
are just a building block. The channels and their properties have preferably been
previously verified to actually be correct.

As an example, one can represent authentic channels using the following new facts
(and the rules given below):

1. AuthSend(s,r,m) whose three arguments are the actual sender, the intended
(but not guaranteed) receiver, and the message;

168 10 Basic Modeling

2. the persistent !Auth(s,m) fact whose two arguments are the authentic sender and
the message;

3. AuthRecv(s,r,m) whose arguments are the actual authentic sender, the purported
receiver, and the message.

For this type of channel, the adversary may select any desired receiver, as authenticity
only guarantees the message sender’s identity. The sender using this channel type can
put the AuthSend fact with its own name, intended receiver name, and message on
one of its rule’s right-hand sides. A receiver uses the AuthRecv fact with the sender,
receiver’s name, and message in the left-hand side of one of its rules. Note that the
message content is made available to the adversary as well, as the channel is not
secret. This happens in the first of the two following rules modeling the internals
(only defined once), which are translating from the send fact to the receive fact. The
full file is available at ChannelRules.spthy.
rule authentic_channel_send:

[AuthSend(A,B,m)]
--[AuthChan_Out(A,B,m)]->

[!Auth(A,m), Out(m)]

rule authentic_channel_receive:
[!Auth(A, m), In(B)]

--[AuthChan_In(A,B,m)]->
[AuthRecv(A,B,m)]

The modeler will then only use the AuthSend and AuthRecv facts in all other rules
of their model, while !Auth should only appear in these two standardized rules and
nowhere else. Note that all of this is fully user-defined, and the above is just one
possible version. None of the names shown are reserved in any way, so the modeler is
required to take care.

Confidential channels work similarly, with a !Conf fact with the guaranteed receiver
and the message. Confidential channels use a ConfSend fact with the agent’s name
as the first argument, the receiver who is the only one to receive the message as
the second argument, and the message last. This is received with ConfRecv, which
has the claimed sender, actual receiver, and message as arguments. For confidential
channels, the adversary cannot extract the message. However, the adversary can create
a confidential message for anyone, and can change the claimed sender of existing
confidential messages (as they are not authentic). The three rules describing the
internals are given next, noting that !Conf should not be used in any other rules.
rule confidential_channel_send:

[ConfSend(A,B,m)]
--[ConfChan_Out(A,B,m)]->

[!Conf(B,m)]

rule confidential_channel_receive:
[!Conf(B, m), In(A)]

--[ConfChan_In(A,B,m)]->
[ConfRecv(A,B,m)]

10.5 How do I know my model makes sense? 169

rule confidential_channel_send_adversary:
[In(<A,B,m>)]

--[]->
[ConfSend(A,B,m)]

Putting the properties of the two kinds of channel (authentic and confidential) together,
we get a secure channel using !Sec with sender, receiver, and message arguments.
We use SecSend and SecRecv in the agent rules and the internal rules similar to the
above ConfSend and ConfRecv.
rule secure_channel_send:

[SecSend(A,B,m)]
--[SecChan_Out(A,B,m)]->

[!Sec(A,B,m)]

rule secure_channel_receive:
[!Sec(A,B,m)]

--[SecChan_In(A,B,m)]->
[SecRecv(A,B,m)]

In a secure channel, the adversary cannot learn the message or change either of the
sender or receiver, as the name secure channel suggests. The presented version does
not protect against replay though, as the !Sec fact is persistent, and can thus be
reused. Removing the ! and turning it into Sec would give a version where a message
in a secure channel cannot be replayed.

Another advanced notion of channel provides the property of “eventual delivery”
and uses restrictions to enforce progress, i.e., to only consider executions in which
anything sent on such a channel is received at some later time. This requires annotating
all rules carefully, but there is an automatic translation from SAPIC that takes care of
this. For more on this, see [7].

The above channels have been used in many models successfully. Of course, there
can also be other kinds channels with different properties, defined by the modeler as
desired.

10.5 How do I know my model makes sense?

Given a protocol model, it is critically important to ensure that the model actually
formalizes the intended protocol. Beyond careful manual inspection, there are various
tool-assisted options that help catch mistakes made during modeling.

10.5.1 Executability of rules

The first approach to model validation is to check that the protocol model can be
executed. By this we mean that the agents playing in the different roles can execute

170 10 Basic Modeling

all the rules that constitute their role. One can check this, for each role, by writing a
lemma with exists-trace that checks for the existence of an action in the trace
that is emitted when the role’s last rule is fired. To prove this lemma, Tamarin must
show that such a trace exists. If the lemma is not provable, then the emitted action is
not reachable. This means that the protocol, as modeled, is not executable and any
guarantees (e.g., for secrecy) that are provable, may hold simply because the protocol
cannot run to completion.

If a trace terminating in a desired, final, action is found, one should then check it
carefully. Does the trace have the expected form in the resulting dependency graph
shown in Tamarin’s GUI? When this is the case, one has further evidence that the
rules model the intended protocol steps. Note that this check should first be done
for all agents separately. Afterwards, it should also be done for all agents at once as
otherwise some uniquely created fact that two agents need for their different roles
might have been consumed by one of them, so the protocol is not executable after all.
Moreover, all the resulting executions should not involve help from the adversary, as
the protocol modeled should be executable by the agents on their own. Finally, if the
trace involves unnecessary steps, one can make the lemma more precise and require
that each agent’s rules are executed only once, and in the right order, to ensure that
the expected protocol execution is possible.

In the early phases of model development, one can of course already look at traces up
to the furthest point modeled to see how the model “works” and whether the traces
match the modeler’s expectations.

10.5.2 Sanity check: intentionally break the protocol

Additional sanity checks that one can perform are to either (1) add small weaknesses
to the model or (2) specify unreasonably strong properties. In either case, one would
expect Tamarin to find attacks. An example of the former would be removing a
check on a received value, e.g., that it is a nonce previously sent out. An example of
the latter would be to strengthen a secrecy property by removing the part of a lemma
formula saying “or a participant was corrupted.” If this intentionally broken lemma
is still verified, then something is likely modeled incorrectly.

Chapter 11

Common Workflows

For most protocols, the way Tamarin is used follows similar patterns, and we describe
here the most common workflows. This chapter brings together many concepts and
techniques from previous chapters. In some cases, we will also point to additional,
more advanced material from subsequent chapters.

11.1 Tamarin’s user interfaces

We start with an overview of the two user interfaces available when running Tamarin.
We start with the graphical user interface that allows interaction. Afterwards we
describe the command-line interface, which is often used to reproduce results, or
when analyzing many protocols or properties at once.

11.1.1 Analysis using Tamarin’s GUI

Tamarin’s most useful workflow uses its graphical user interface (GUI), as this
supports the detailed inspection of attack traces and incomplete proofs. We already
introduced the GUI in Section 6.1.1, but we will describe the complete workflow
here. We provide a high-level overview of the workflow in Figure 11.2.

Tamarin 1.10 does not include a text editor: users provide their own input file that
describes their Tamarin theory (named with the default extension .spthy) using
any editor. There is also an “official” Tamarin plugin for VSCode, available from
the VSCode store or the Tamarin website, providing syntax highlighting, syntax
checking, and wellformedness checks similar to those provided by Tamarin.

The user starts Tamarin in interactive mode using the command
tamarin-prover interactive .

171

172 11 Common Workflows

where ‘.’ refers to the current directory, which we assume contains the .spthy file.
This command starts a local web server with the graphical user interface.

Afterwards, the user can open a web browser and visit http://127.0.0.1:3001.
This starts Tamarin’s graphical user interface, and presents the user a list of all
.spthy files in the directory together with their theory names. The user can select
any of these files, which in turn opens the main GUI view, and additionally shows any
warnings or errors. We discuss how to handle warnings and errors in Section 11.4.

Note that the Tamarin server does not reload new directory listings or file content: if
the user edits the .spthy file, the server must be restarted.

In case there are no errors or warnings, one could next try to prove the specified
lemmas. However, it is prudent to first check if there are any remaining partial
deconstructions. In many (but not all) cases, partial deconstructions lead to non-
termination, and it is recommended to first try to remove them using the techniques
described in Chapter 8.

In practice, if there are any partial deconstructions, one would first re-run Tamarin
with the --auto-sources option, which automatically generates a new sources
lemma. The user should now check both (i) that no more partial deconstructions
remain, and (ii) that the generated sources lemma can actually be verified by Tamarin.
If either of these does not hold, the partial deconstructions can only be solved by a
manually specified sources lemma. Chapter 8 explains how to approach this.

Next, the user can ask Tamarin to verify the specified lemmas. One option is to
press ‘S’, which causes Tamarin to try to prove all lemmas in the file. Alternatively,
the user can select ‘sorry’ for a specific lemma (in the left-bottom pane) and press
‘a’ to attempt to prove it. However, there is one catch here: Tamarin’s analysis of
a specific lemma simply assumes (but does not attempt to prove) that all preceding
reuse lemmas hold. It is up to the user to ensure that they also verify the preceding
reuse lemmas, see also Section 9.2.

In the ideal case, Tamarin’s analysis terminates and Tamarin reports that the lemma
is either verified or falsified. By default, when a lemma is verified, the full proof tree
is visible in the left pane (see 11.1 for an example with an exists-trace lemma). When
a lemma is falsified, the counterexample dependency graph and formulas are shown
in the right pane. For exists-trace lemmas, this is reversed: a verified exists-trace
lemma shows the trace in the right pane.

Recall that the security of security protocols is, in general, undecidable. Hence, given
a lemma to prove, Tamarin may fail to terminate in a reasonable amount of time
or even never terminate. In Section 11.6, we describe typical causes and solutions.
In such cases, the analysis can be aborted or restarted, and the user interface can be
used to inspect partial proofs. In practice, this amounts to not pressing ‘a’ or ‘S’,
but rather using the proof-step methods to partially unfold the proof. The user can
press a number (or click a proof step shown) to unfold exactly one proof step, where
specifically pressing ‘1’ uses the next proof step the automatic prover applies. The

11.1 Tamarin’s user interfaces 173

 Tutorial

 (8)

 (10 cases, deconstructions complete)

(10 cases, deconstructions complete)

 Client_session_key_secrecy:
 all-traces
 "¬(∃ S k #i #j.
 ((SessKeyC(S, k) @ #i) ∧ (K(k) @ #j)) ∧
 (¬(∃ #r. LtkReveal(S) @ #r)))"

 Client_auth:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 ((∃ #a. AnswerRequest(S, k) @ #a) ∨
 (∃ #r. (LtkReveal(S) @ #r) ∧ (#r < #i)))"

 Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 ((∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j))) ∨
 (∃ #r. (LtkReveal(S) @ #r) ∧ (#r < #i)))"

 Client_session_key_honest_setup:
 exists-trace
 "∃ S k #i.
 (SessKeyC(S, k) @ #i) ∧ (¬(∃ #r. LtkReveal(S) @ #r))

 Client_1(S, k) ▶₀ #i
 Client_1
 !KU(h(~k)) @ #vk
 Serv_1
 !KU(aenc(<'1', ~k>, pk(~ltkS))) @ #vk.1
 Client_1
 // trace found

: none

: ∀ #r. (LtkReveal($S) @ #r) ⇒ ⊥

:

TAMARIN

Fig. 11.1: The Tamarin graphical user interface after selecting a theory. On the left
(in the red box): the different elements of the loaded theory, in particular, the lemmas
and their proofs. On the right (in the blue box): details for the selected proof step.

user can also press ‘b’ to unfold a set of proof steps (default depth 5), and repeat the
process until the desired level of unfolding is reached. At this point, inspecting the case
distinctions and dependency graphs will often yield insights into why Tamarin fails
to terminate or exhausts memory. These insights can help to formulate appropriate
lemmas that can be added to the theory file, or influence the choices made by the
heuristics.

In some cases, it can be convenient to modify the choices made by Tamarin’s
heuristics. For example, a built-in heuristic might repeatedly select similar open
constraints with slightly different parameters, rather than selecting those constraints
that would lead to a completed trace or a contradiction. In this case, the user can try
to manually guide Tamarin to a proof by effectively acting as the human heuristic,
and selecting different proof methods in some steps; see Section 11.2 for an example
regarding a special class of lemmas. Note that the user can freely mix these methods: it
is possible to unfold some steps in a proof branch by ‘1’, then select some other proof
methods in the next steps, and then ask Tamarin to auto-complete the remainder of
the proof branch by pressing ‘a’. Once Tamarin determines the proof is complete,
the user can save the constructed proof, which we describe in Section 11.3.2.

For some complex proofs, and in particular when analyzing large sets of similar
protocols for which manual proof method selection is infeasible (as is done in

174 11 Common Workflows

Start

Edit myfile.spthy

tamarin-prover

interactive .

no

Any errors
or warnings?

Any partial
deconstructions

remaining?

tamarin-prover
interactive

--auto-sources .

Any partial
deconstructions

remaining?

Inspect partial
deconstructions in GUI

Auto-source
lemma can
be verified?

Autoprove ('a' or 's')

Wait until...

run out of
memory or
patience Generate partial proofs

in GUI (with '1' or 'b')
Specify

reusable lemma

Guide proof
partially manually

Export proof

falsified

verified

Use GUI to inspect
trace if available

Stop

Influence heuristics

yes

yes

yes

no

no

Specify sources lemma

no

yes

Fig. 11.2: The standard Tamarin workflow using the graphical user interface. By
default, the terminology in the picture corresponds to all-traces lemmas, whereby
a proof establishes that no counterexample trace exists, and any trace found is
a counterexample. In contrast, for exists-trace lemmas, the interpretation of
counterexample and proof is swapped: a proof corresponds to finding a trace, and
establishing that no trace exists is a counterexample.

Section 17.1), a tailored heuristic may help to automate proof construction. There are
two main mechanisms to tailor Tamarin’s automatic proof heuristics:

1. Start the Tamarin server with an option to select a different, built-in, general-
purpose heuristic, see Section 6.6,

2. Encode the heuristic as fine-grained hints. In Chapter 16, we describe several such
techniques, including fact annotation, using Tamarin’s tactic language, or writing
an oracle program.

11.2 Exists-trace lemmas 175

11.1.2 Tamarin’s command-line interface

We provide a high-level overview of typical command-line workflows in Figure 11.3.
A notable difference from the graphical user interface is that less information is
available: no information is provided about partial deconstructions, partial proof
information, or details on any counterexamples. While the command-line mode is
extremely useful for batch exploration of large sets of relatively simple models, the
GUI is typically used for proving lemmas about complex models.

Start

Edit myfile.spthy

tamarin-prover

myfile.spthy

no

Any errors
or warnings?

Wait until...

run out of
memory or
patience

falsified

verified

Stop

Use different
built-in heuristics

Switch to GUI workflow

tamarin-prover

--prove myfile.spthy

Use
--auto-sources

Restrict
precomputations

Restrict rules
or weaken property

yes

Want
to understand

counterexample
details?

no

yes

Add command-line
options

Fig. 11.3: Standard workflow for command-line Tamarin usage.

11.2 Exists-trace lemmas

Tamarin’s heuristics are primarily optimized for finding proofs that a property holds
for all traces, i.e., proving that certain traces do not exist. However, the heuristics
are less effective for proving that at least one trace actually exists. This may lead to

176 11 Common Workflows

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
by sorry

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
simplify
solve(Client_1(S, k) ▶₀ #i)
 case Client_1
 solve(!KU(h(~k)) @ #vk)
 case Serv_1
 by sorry
 next
 case c_h
 by sorry
 qed
qed

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

end

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (loop breakers delayed)

1. solve(Client_1(S, k) ▶₀ #i) // nr. 2 (from rule Client_2)

2. solve(!KU(h(k)) @ #vk) // nr. 3 (probably constructible)

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

last: none

formulas:

subterms:

equations:
 subst:
 conj:

lemmas:

allowed cases: refined

solved formulas: ∃ S k #i. (SessKeyC(S, k) @ #i)

unsolved constraints:
 !KU(h(k)) @ #vk // nr: 3" (probably constructible)"

 Client_1(S, k
) ▶₀ #i // nr: 2 (from rule Client_2)" (useful2)"

solved constraints:
 SessKeyC(S, k
) @ #i // nr: 0 (from rule Client_2)" (useful2)"

Method: solve(Client_1(S, k) ▶₀ #i) ...

Running TAMARIN 1.10.0 Index Download Actions » Options »

Fig. 11.4: Applicable constraint solving steps in the current state of the proof.

non-termination or memory exhaustion when proving an exists-trace lemma, even
when the user has a strong intuition on why a simple trace exists.1

We will use the example of a simple challenge-response protocol, presented in Sec-
tion 6.4, to show the situation for an exists-trace lemma in more detail. Consider the
following lemma:
lemma Client_session_key_setup:

exists-trace
" Ex S k #i.

SessKeyC(S, k) @ #i "

There are two main approaches to resolve non-terminating proof attempts. First, one
can use the graphical user interface to incrementally build a proof that constructs,
backwards, the envisioned trace. Assuming the user presses ‘1’ when there is only
one choice, two types of case distinction will appear in this process: (a) multiple
applicable constraint solving rules to choose from in the right pane, and (b) case
distinctions in the proof tree in the left pane. For type (a), the user can pick any of the
listed options visible in Figure 11.4, which correspond to all possible instantiations
of constraint solving rules that apply to the current constraint system. In some cases,
Tamarin’s default heuristic will not order the applicable rules in an optimal way, and
the user can choose to deviate from Tamarin’s recommended choice, which is the
top one numbered 1.

For type (b) the user can pick the case that seems most promising in the left pane,
shown in Figure 11.5. In that example, the case distinction shows the two possibilities
that the h(k) is either produced by the Serv_1 protocol rule or constructed by the
adversary (c_h) directly. As we are looking for a standard execution, we would choose
the case of the protocol rule.

The second approach is to strengthen the exists-trace lemma by adding more informa-
tion to it. For example, if we want to prove a lemma of the form ∃𝑃 that expresses that
there exists a trace in which an initiator role executes its final step, we may strengthen
this lemma to ∃𝑄 = ∃(𝑃 ∧ 𝑃′), where 𝑃′ expresses that the initiator rule must have
also executed its first step in the trace. While Tamarin should, in principle, be able

1 Note that all suggestions made in this section also apply to all-trace lemmas, and not just to
exists-trace lemmas. Moreover, we will present more general methods to help termination and
memory consumption in Section 11.6.

11.3 Further workflows 177

theory SimpleChallengeResponse begin

Message theory

Multiset rewriting rules (6)

Tactic(s)

Raw sources (10 cases, deconstructions complete)

Refined sources (10 cases, deconstructions complete)

lemma Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 (∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j)))"
by sorry

lemma Client_session_key_setup:
 exists-trace "∃ S k #i. SessKeyC(S, k) @ #i"
simplify
solve(Client_1(S, k) ▶₀ #i)
 case Client_1
 solve(!KU(h(~k)) @ #vk)
 case Serv_1
 by sorry
 next
 case c_h
 by sorry
 qed
qed

lemma Client_session_key_setup_stronger:
 exists-trace
 "∃ S k #i #j.
 (SessKeyC(S, k) @ #i) ∧ (AnswerRequest(S, k) @ #j)"
by sorry

end

Proof scripts

Applicable Proof Methods: Goals sorted according to the 'smart' heuristic (loop breakers delayed)

1. solve(!KU(aenc(<'1', ~k>, pk(~ltkS))
) @ #vk.1) // nr. 7

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5
s. autoprove (S. for all solutions) for all lemmas

Constraint system

last: none

formulas:

Case: Serv_1

Running TAMARIN 1.10.0 Index Download Actions » Options »

Fig. 11.5: Proof tree of the current state of the proof with two incomplete branches,
marked ‘sorry’.

to establish this automatically, providing this information manually can sometimes
speed up proofs substantially. Note that changing an all-traces lemma in a similar
fashion may prove less than what was originally intended, so approach this with
caution. Similarly, adding a restriction (that then applies to all lemmas of either kind)
can help with termination, but changes the semantics, and one must check that it is
still the intended meaning. In the previously given example, even though it is not
necessary, we could strengthen the lemma to:
lemma Client_session_key_setup_stronger:

exists-trace
" Ex S k #i #j.

SessKeyC(S, k) @ #i
& AnswerRequest(S,k) @ #j"

11.3 Further workflows

We now explain how to run Tamarin on a remote machine, how to import and export
proofs, how to time proof construction, and different parallelization options.

11.3.1 Running Tamarin remotely

Since Tamarin uses a web browser for its GUI, you may run Tamarin on a remote
machine, for example using ssh, and connecting there from a local browser. If the
server’s port is not directly accessible (by default Tamarin uses port 3001), for
example, due to a firewall, you can use the following command to create a SSH tunnel
from localhost:3002 to SERVERNAME:3001.

178 11 Common Workflows

ssh -L 3002:localhost:3001 SERVERNAME

Your browser can then connect to localhost:3002. Note that we are using a different
port than usual just to make it easy to see which parameter is which.

To run multiple instances of Tamarin on the same server, but on different ports, the
flag --port[=PORT] can be used. Multiple SSH connections to different ports can
then be combined with multiple Tamarin runs at the respective ports. Moreover, the
screen command runs Tamarin in the background so that, for example, it continues
running even after the ssh connection is closed.

11.3.2 Exporting and importing proofs

In command-line mode, Tamarin’s output can be redirected to a file using the
--output[=FILE] flag. The output is again a valid Tamarin file, and can be loaded
again. This also includes any proof(s) done by Tamarin.

In interactive mode, the link Download on the top right can be used to export
the current state of the theory, including any (partial) proof(s) of the lemmas (see
Figure 11.6).

 Tutorial

 (8)

 (10 cases, deconstructions complete)

(10 cases, deconstructions complete)

 Client_session_key_secrecy:
 all-traces
 "¬(∃ S k #i #j.
 ((SessKeyC(S, k) @ #i) ∧ (K(k) @ #j)) ∧
 (¬(∃ #r. LtkReveal(S) @ #r)))"

 Client_auth:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 ((∃ #a. AnswerRequest(S, k) @ #a) ∨
 (∃ #r. (LtkReveal(S) @ #r) ∧ (#r < #i)))"

 Client_auth_injective:
 all-traces
 "∀ S k #i.
 (SessKeyC(S, k) @ #i) ⇒
 ((∃ #a.
 (AnswerRequest(S, k) @ #a) ∧
 (∀ #j. (SessKeyC(S, k) @ #j) ⇒ (#i = #j))) ∨
 (∃ #r. (LtkReveal(S) @ #r) ∧ (#r < #i)))"

 Client_session_key_honest_setup:
 exists-trace
 "∃ S k #i.
 (SessKeyC(S, k) @ #i) ∧ (¬(∃ #r. LtkReveal(S) @ #r))

 Client_1(S, k) ▶₀ #i
 Client_1
 !KU(h(~k)) @ #vk
 Serv_1
 !KU(aenc(<'1', ~k>, pk(~ltkS))) @ #vk.1
 Client_1
 // trace found

: none

: ∀ #r. (LtkReveal($S) @ #r) ⇒ ⊥

:

TAMARIN

Fig. 11.6: Download link

When loading such a theory file, Tamarin will parse the included (partial) proof(s),
and verify all proof steps. If this fails at any point, this is shown in both in-
teractive and command-line mode. In interactive mode, any invalid proof step
appears in gray; in command line mode, the proof steps are annotated with
/* invalid proof step encountered */. This can happen due to a version
change of Tamarin that might re-order some steps, or due to manual edits in the
stored file.

11.3.3 Timing proof construction

To compute the time needed to prove a given lemma Example, one may call Tamarin
in the command-line mode using the parameter --prove=Example, e.g.,

11.4 Error messages and solutions 179

time tamarin Example.spthy --prove=Example

Tamarin will then only prove the lemma Example. Note that the duration of the pre-
computation is included in this time. To get the time needed for the pre-computation,
the user can time a run of Tamarin on the input file without the --prove= flag.

To prove multiple lemmas, one may use --prove=Ex*, which will prove all lemmas
that start with Ex.

Tamarin’s internal preprocessor (see Section 10.2.3) can also be used to control
which parts of the input file should be treated.

11.3.4 Configuring parallelization

Internally Tamarin’s constraint solver is parallelized to exploit multi-core CPUs.
The number of threads it uses can be configured using Haskell’s runtime system
(RTS), with the command-line parameter
+RTS -Nx -RTS

where x is the number of threads to use. Here is an example for four threads.
tamarin Example.spthy --prove +RTS -N4 -RTS

By default, Haskell will use as many threads as there are cores on the machine. In
practice, when using servers with many CPUs and cores, it often makes sense to
limit the number of threads as the synchronization overhead can rapidly exceed the
speedup from the parallelized execution. A rough rule of thumb is to use 10 or fewer
threads with Tamarin 1.10.

If more cores are available, one can still fully use the server’s computing power by
proving multiple lemmas in parallel, e.g., using multiple Tamarin instances and the
parameter --prove=LEMMANAME to prove one lemma per instance.

11.4 Error messages and solutions

When loading a theory file, Tamarin will report errors present or wellformedness
warnings. Whereas an error prevents Tamarin from loading a file, warnings do not
stop Tamarin from continuing. However, the warnings should also be taken seriously
as they often indicate modeling errors or issues that endanger the correctness of the
subsequent analysis.

All parser errors are reported in the terminal where Tamarin was started, even in
interactive mode. Only when loading theories from files explicitly in Tamarin’s GUI
do parsing errors appear as a popup. All errors must be fixed before Tamarin can
load the file successfully. Note that Tamarin may report that an error occurs after its

180 11 Common Workflows

real location in the file, for example if the error causes the parser to fail parsing the
next construct.

Once a theory file is successfully parsed, Tamarin will check wellformedness
conditions to determine whether the file contains any obvious errors that could
endanger the correctness of the analysis. If checks fail, Tamarin will print a warning
both in the user’s terminal and in the interactive mode (on the first page after clicking
on the Theory). If you want warnings to be treated as errors to prevent further
Tamarin interaction, you can use the command-line flag --quit-on-warning.

The following wellformedness conditions are checked by Tamarin and their violation
leads to warnings.

• No Out or K facts should appear in the premises of protocol rules and no Fr, In,
or K facts should appear in the conclusions.

• All action facts used in lemmas or restrictions should appear somewhere in the
rules.

• Facts must have the same arity everywhere, i.e., in all rules, lemmas, and restric-
tions.

• Fr, In, Out, and K facts must be of arity one.
• Fr facts must be used with a variable of type message or type fresh.
• All lemmas must be guarded formulas.
• All variables in the conclusions of a rule must appear in the premises, or be public

variables.
• The premises of a rule must not contain reducible function symbols such as

decryption, XOR, etc.
• The conclusions of a rule must not contain multiplication *.

If any of these conditions fails, Tamarin gives a warning. We now discuss these
warnings and how to fix them.

• Variable with mismatching sorts or capitalization

This warning is triggered if a rule contains a variable that is either used with
different sorts (e.g., once as a fresh variable and once without type annotation), or
with different cases (e.g., a and A capitalized differently). Note that Tamarin is
sensitive to capitalization so a and A are different variables. However, in practice,
having the same name with a different capitalization often corresponds to a
typographical error, resulting in unwanted behavior.

Solution: The warning is followed by a list of the problematic rules. Check whether
variables have the same type annotations in all of these rules, and whether there is
a variable that is both capitalized and lower case.

• Fresh public constants

The warning

rule X: fresh public constants are not allowed

11.4 Error messages and solutions 181

is triggered if the rule X contains a public constant (e.g., a string constant ’test’),
but with a “fresh” type annotation (e.g., ~’test’).

Solution: Ensure that no public constant is prefixed with the “fresh” type, by either
removing the fresh annotation from rule X, or changing its type.

• Unbound variables

The warning

rule X has unbound variables

is triggered if the rule X has an unbound variable, i.e., a variable that is used in the
actions or the conclusions, but not in the premises.

Solution: Ensure that all variables in the actions and conclusions are bound in the
premises, or are of type public (e.g., $A).

• Special facts

The warning

Rule X uses disallowed facts on left/right-hand-side

is triggered if special facts such as In, Out, Fr, and K are incorrectly used.

Solution: Ensure that the rule X does not use any K facts, In and Fr facts only
appear in the premises, and Out facts only appear in the conclusions.

• Fr facts must only use a fresh variable or a msg-variable

Fr facts can only be used with variables of type fresh or message.

Solution: Ensure that the Fr fact contains a variable of type fresh or message.

• Public constants with mismatching capitalization

Tamarin is sensitive to capitalization, i.e., ’test’ and ’Test’ are considered
to be two different public constants. The situation here is similar to that with
variables: having the same name, but different capitalization, often corresponds to
a typographical error, resulting in unwanted behavior.

Solution: Ensure that public constants have always the same capitalization. For
example, avoid having ’test’ and ’Test’.

• Inexistent lemma/restriction action

Tamarin checks whether all action facts used in lemmas or restrictions actually
appear in some rule. When this is not the case, the following warning is triggered:

Lemma/Restriction X references action Y but no rule has such
an action.

Solution: Ensure that the action Y used in lemma or restriction X actually appears
in some rule. Note that lemmas and restrictions can only reason about action

182 11 Common Workflows

facts (i.e., facts “on the arrow”), but not about state facts (i.e., facts that appear in
the premises or conclusions). Note too that sometimes this warning is triggered
because a fact was inadvertently put into the conclusions or premises rather than
the actions.

• Message Derivation Checks

The warning

The variables of the following rule(s) are not derivable
from their premises, you may be performing unintended
pattern matching.

is shown if within a rule some variables on the right hand side cannot be deduced
from the terms on the rule’s left hand side using the functions and equations of
the theory. This can be due to the use of pattern matching. See Section 10.1.6 for
more details.

Solution: In some cases the behavior is intended, in which case one can add the
no_derivcheck annotation to the given rule. Otherwise, rewrite your rule to
avoid the problematic pattern matching, or use function applications instead. See
Section 10.1.6.

• Quantifier sorts

The warning

Lemma/Restriction uses quantifiers with wrong sort

is triggered if a lemma or restriction quantifies over fresh or public variables. One
can only quantify over message or timepoint variables.

Solution: Ensure that variables quantified in the corresponding lemma or restriction
are of sort message or timepoint.

• Lemma annotations

The warning

Lemma X: cannot reuse ’exists-trace’ lemmas

is triggered when an ’exists-trace’ lemma is annotated with the reuse
annotation.

Solution: Remove the reuse annotation from lemma X.

• Formula guardedness

In Tamarin, all lemmas and restrictions must be guarded formulas. Tamarin
tries to convert all formulas into guarded formulas, but if this fails, the following
warning is raised:

Lemma/Restriction X cannot be converted to a guarded formula

11.4 Error messages and solutions 183

Solution: Rewrite lemma/restriction X so that it becomes guarded. This is mandatory
as otherwise using the lemma or restriction will lead to errors. See Section 11.5
on how to write guarded formulas.

• Reserved names

Protocol facts must not be called Fr, In, Out, KU, or KD. Otherwise, the following
warning is triggered:

X contains facts with reserved names

Solution: Use different names for protocol facts.

• Reserved prefixes

The warning

X contains facts with reserved prefixes
(’DiffIntr’, ’DiffProto’) inside names

only occurs in equivalence mode. In this mode, facts starting with ’DiffIntr’ or
’DiffProto’ are automatically added by Tamarin and have a special meaning,
and therefore must not be used by the user.

Solution: Rename any fact starting with ’DiffIntr’ or ’DiffProto’.

• Formula terms

The warning

Lemma/Restriction X uses terms of the wrong form

can be raised for different reasons. Within lemmas or restrictions, terms must be
of a certain form. For instance, all variables must be bound, and either of type
message, or timepoint. In particular, it is not possible to use variables of type
fresh or public within lemmas or restrictions. Note that omitting the timepoint
sort prefix # can also cause this error. Moreover, reducible function symbols (i.e.,
function symbols that can “disappear” when applying an equation, such as XOR,
dec, etc.) also cannot be used.

Solution: Ensure that there are no unbound variables, and no reducible function
symbols. Check too whether timepoint variables are consistently prefixed using #,
and that there are no fresh or public variables.

• Multiplication restriction of rules

The warning

The following rule is not multiplication restricted

can be caused by two issues:

1. A rule that uses a multiplication operator in its conclusion. In this case Tamarin
prints Terms with multiplication: X to show the problematic terms.

184 11 Common Workflows

2. A rule that uses reducible function symbols in the premises, which can result in
unbound variables in the actions or conclusions. In this case, Tamarin prints
the problematic variables after Variables that occur only in rhs.

Consider the following example.
The following rule is not multiplication restricted:

rule (modulo E) Test:
[F((a XOR b))] --> [G((a*b))]

After replacing reducible function symbols in the left hand side
with variables:

rule (modulo E) Test:
[F(x.1)] --> [G((a*b))]

Terms with multiplication: (a*b)
Variables that occur only in rhs: a, b

The rule Test has two problems: it uses a multiplication in the conclusion (first
issue) and it uses a reducible function symbol (XOR) in the premises. If a XOR b
reduces to zero (for example because a = b), the variables a and b would not
be well defined. Here Tamarin tries to solve the problem by replacing a XOR b
with a new variable x.1. However, in that case a and b would not be defined
again. Note that if we had used a XOR b in the conclusion, Tamarin would have
replaced that by x.1 as well, and could have continued normally.

Solution: Avoid using reducible function symbols in the premises of a rule, and
do not use multiplication * in the conclusions.

• Check presence of the --prove/--lemma arguments in theory

When using the command-line parameter --prove=Y to specify which lemmas to
prove, Tamarin checks whether Y actually matches at least one lemma from the
theory. If this is not the case, the following warning is triggered:

Y from arguments do(es) not correspond to a specified lemma
in the theory

Solution: Check that Y actually matches a lemma.

• Variants

When using the automatic source lemma generation (option --auto-sources),
Tamarin adds events, i.e., action facts, to individual variants of the rules. When
exporting such a file, Tamarin exports all variants explicitly to preserve these
annotations. However, when loading a file with explicit variants, Tamarin tries to
recompute the variants and checks them against the loaded ones (modulo added
action facts). If it detects a difference, the message

rule X: cannot confirm manual variants

is shown. Such a difference can be caused by manual edits, or, for example, by a
different version of Maude.

11.4 Error messages and solutions 185

Solution: Check whether the variants are correct, i.e., the variants given in the file
only have additional action facts compared to the automatically computed variants.
If they are, you can ignore the warning, otherwise fix the variants in your input
file or simply remove them. In that case, if you had used auto-sources before,
you will probably also have to remove the sources lemma and generate a new one.

• Left/Right rule

When using the automatic source lemma generation (option --auto-sources),
Tamarin adds events to individual variants of a rule. In equivalence mode, see
Chapter 13, this must be done for both the left and right side of the system. Hence
Tamarin also exports both left and right side rules explicitly. When loading a file
with explicit rules per side, Tamarin will recompute rule instances for both sides
and check that they match the initial rule (modulo added action facts). If it detects
a difference, the message

Inconsistent left/right rule

is shown.

Solution: As in the prior bullet titled Variants, check whether the left and right
rule variants are correct, i.e., that the variants in the input file only have additional
action facts compared to the automatically computed variants. You can also try to
remove both rules and variants, and to generate a new sources lemma.

Other common error messages

The previously mentioned, error messages are generated by Tamarin itself. In practice,
it is possible to run into other types of errors that are caused by the user’s operating
system or the invocation of external dependencies such as Maude or oracle scripts.
Because these depend on the user’s specific operating system, library version, and
general environment, we cannot give a full list. However, there are some commonly
reported error messages that we describe below.

In the following, we use upper-case words as placeholders for parts of error messages
that depend on the specific input file and command-line arguments. ORACLE is the
name of the oracle script file.

• tamarin-prover: ./ORACLE: readCreateProcess: posix_spawnp:
does not exist (No such file or directory)

This error message can have two possible reasons.

Potential cause 1: The first and most common cause is that the oracle script
ORACLE cannot be found in the current directory.

Solution 1: Ensure that the file exists and that you have specified the right (relative)
path to the file.

186 11 Common Workflows

Potential cause 2: Alternatively, the file is present, but it is a shell script whose
first line (which starts with #!) is incorrectly specified for the system it is being
executed on.

Solution 2: Inspect the ORACLE script to see which scripting language it uses, and
adapt the first line of the script to specify the interpreter correctly for your system.2

For example, if the script requires python version 3, it may be sufficient to change
the first line of your oracle script file to:

#!/usr/bin/env python3

Note that the details of the first line specification are system-dependent.

• FILE1: FILE2: No such file or directory
tamarin-prover:readCreateProcess: ./ORACLE "TERM"
(exit 127): failed

This error likely indicates that the oracle file is a shell script that starts with the
following line:

#!FILE1 FILE2

Solution: Modify the first line of the script (notably FILE2) to point to the correct
interpreter as present on your system, similar to the second cause and solution of
the previous error.

• tamarin-prover: ./ORACLE: readCreateProcess: posix_spawnp:
permission denied (Permission denied)

Solution: Ensure that the oracle file ORACLE (in the below, replace ORACLE by
the filename of your oracle script) is readable and executable. On many systems
this can be done by:

chmod +rx ORACLE

• SHELL: ./ORACLE: Permission denied
tamarin-prover: readCreateProcess: ./ORACLE "TERM"
(exit 126): failed

A likely cause is that the oracle script file ORACLE is not readable.

Solution: The same as for the previous error.

• Server shutdown: 0 threads still running
tamarin-prover: Starting the webserver on 127.0.0.1 failed:
Network.Socket.bind: resource busy (Address already in use)
Note that you can use ’–interface="*4"’ for binding to all
interfaces.

2 The details of shell scripting and configuring interpreters are beyond the scope of this book. Some
information can be found at https://en.wikipedia.org/wiki/Shell_script.

https://en.wikipedia.org/wiki/Shell_script

11.5 Guardedness of lemmas 187

This error occurs when starting Tamarin in interactive mode and the port it wants
to use for the webserver (3001 by default) is used by some other process. Often
this is caused by another instance of Tamarin running in parallel.

Solution: Terminate the other process/Tamarin instance that is using the port, or
choose a different port using the option --port=X.

11.5 Guardedness of lemmas

We refer the reader to Section 5.1 for the full syntax available to write lemmas.
In Tamarin, all lemmas must be guarded. A lemma is guarded if the following
conditions are met:

• Variables that are universally quantified (i.e., quantified by All) must be directly
used, either in a fact constraint f@#i, or in an equation s=t, and the following
logical connector, i.e., the outermost connector inside the universal quantifier,
must be an implication, i.e., ==>.

• Variables that are existentially quantified (i.e., quantified by Exists) must be
directly used, either in a fact constraint f@#i, or in an equation s=t, and the
following logical connector, i.e., the outermost connector inside the existential
quantifier, must be a conjunction, i.e., &.

An example of a guarded lemma is as follows, with the full theory available
at Guardedness.spthy.
lemma Guarded:

"All x #i. Finished(x)@#i ==> Ex #j. Start(x)@#j"

The following lemma is not guarded as the variable y is quantified, but never used:
lemma NotGuardedUnusedVariable:

"All x y #i. Finished(x)@#i ==> Ex #j. Start(x)@#j"

When loading a theory, Tamarin checks whether each lemma is guarded, and tries to
convert the formula into a guarded one, where possible. If this fails, Tamarin will
show an error message. For the above example, this looks as follows.
Guardedness:

lemma `NotGuardedUnusedVariable' cannot be converted to a guarded formula:
unguarded variable(s) 'y' in the subformula

"∀ x y #i. (Finished(x) @ #i) ⇒ (∃ #j. Start(x) @ #j)"
in the formula

"∀ x y #i. (Finished(x) @ #i) ⇒ (∃ #j. Start(x) @ #j)"

In this case, it would be easy for Tamarin to just eliminate the quantifier, ∀𝑦, solving
the problem. In general, this is not done as it is likely that the user has made an error
that should be fixed, e.g., accidentally omitting 𝑦 from some fact.

In practice, non-guarded formula errors are often caused by the following issues.

188 11 Common Workflows

• Variables which are quantified, but never used, as in the above example.

• Variables which are quantified, but in the wrong location, as in the following
example:
lemma NotGuardedQuantifiedInWrongPlace:

"All x #i #j. Finished(x)@#i ==> Start(x)@#j"

Here #j is quantified at the beginning, but only used later, which violates our
previously given syntactic definition of guardedness.

• Missing or misplaced parentheses.

In other cases, one can also try to find an equivalent formulation of the property, e.g.,
using logical transformations, that makes the formula guarded.

11.6 Termination and memory exhaustion

Section 8.1 already explained what to do if Tamarin’s precomputations take too long.
Once Tamarin can load the file, the user can then try to prove the given lemmas.
Thus, in this section, we discuss common termination and performance problems
when proving lemmas and how they can be solved. The first question is often how
long to wait for a proof in Tamarin, or for Tamarin’s precomputation, to terminate.
Section 11.6.1 discusses how to get a rough idea of possible running times. We start
with a high-level discussion here on both problems and solutions.

When a proof takes a long time to complete or fails to terminate, this can be caused
by different underlying problems. We discuss these problems at a high-level here,
along with possible solutions, and we delve deeper into this topic in the following
subsections.

The main problems causing a runtime explosion or non-termination when proving
lemmas are the following:

• Partial deconstructions (check in interactive mode whether there are any partial
deconstructions left in the refined sources).

• A high number of variants (check the Multiset rewriting rules in interactive
mode).

• Problematic patterns during proof construction (see Section 11.6.2 on how to
identify and fix them).

Once the problems are identified, the user can try to fix them using different approaches,
depending on the type of problem. Table 11.1 sums up the problems and possible
solutions.

The following strategies can also help Tamarin’s proof construction:

11.6 Termination and memory exhaustion 189

• Adding type annotations inside rules whenever possible (see Section 10.1.5) helps
Tamarin by eliminating impossible executions earlier in the proof search based
on the given types.

• Using pattern matching rather than explicit functions when this is appropriate, see
Section 10.1.6. This leads to fewer rule variants and ultimately fewer cases.

• Fine-tuning the model can also help, for example by abstracting away or refining
certain parts, or by making different choices in the model, where appropriate
(Section 11.6.4).

• For certain datatypes or behaviors, such as counters or memory cells, special
encodings or modeling strategies can help Tamarin. See Section 7.2.5 for common
examples.

• One can also try different heuristics. See Section 6.6 for a list of all built-in
heuristics. Additionally, one can also define custom heuristics (see Chapter 16),
which can help in the cases mentioned above.

Problem Solution(s)
Partial deconstructions Use --auto-sources (Section 8.3) or manually write a

source lemma (Section 8.4)
High number of variants Possible solutions:

• Add type annotations whenever possible inside rules
(Section 10.1.5)

• Use pattern matching instead of explicit deconstructors,
if possible (Section 10.1.6)

• Simplify equational theory, if possible
Proof does not terminate Try to recognize problematic patterns (see Section 11.6.2).

Then, depending on the issue(s):

• Add type annotations inside rules (Section 10.1.5)
• Fine-tune model: try alternative formulations (Sec-

tion 11.6.4)
• Add auxiliary lemmas (Section 11.6.3)
• Use induction (Section 9.1) if the model contains looping

behavior
• Use advanced encodings/modeling strategies for certain

datatypes/behaviors (Section 7.2.5)
• Try different heuristics (Section 6.6)
• Develop custom heuristic (Chapter 16)

Table 11.1: Possible problems and solutions.

190 11 Common Workflows

11.6.1 How long will my proof take?

In general, it is impossible to predict how much time is needed to prove a lemma. There
are numerous factors that influence the complexity of proof construction, including
the sheer number of rules in the theory, the presence of a complex equational theory
(such as Diffie-Hellman exponentiation, XOR, or some user-defined theories), the
complexity of the lemma’s statement, the number of sources, etc. If some of these
factors are present, verification times can increase, and non-termination becomes
more likely.

In practice, most users start by analyzing their lemmas individually. If a lemma’s
proof takes substantial time, for example, more than a few minutes, then one should
try to diagnose the reasons for this. Advice on this is given below in Section 11.6.2. If
one anticipates that proof construction will be time consuming, for example, proving
other lemmas for the same model was time consuming or the model is large and
complex, an option is to let Tamarin run overnight. There are also tools that can be
used to run multiple lemmas in parallel, which are described in Section 11.7. This can
help by applying “brute force” to prove lemmas when one has access to a powerful
machine.

When the precomputations take too long, one can try to limit the saturation steps or
the number of open chains to solve. Section 8.1 provides more information on this
option.

11.6.2 Recognizing problematic patterns

When Tamarin does not appear to terminate while trying to prove a lemma, one can
look for certain patterns in the proof construction that are problematic as they can
lead to non-termination, or at least substantial proof times.

The most common issue is repeating patterns in the proof. Consider the sim-
ple hash chain example from Section 9.3. When trying to prove the lemma
Auxiliary_Success_chain without induction, one can immediately see a re-
peating pattern: Tamarin adds an instance of the Loop rule, followed by an instance
of the Gen rule, which triggers again an instance of the Loop rule, and so on (see
Figure 11.7). In this case, it is simple to resolve this issue by proving the lemma using
induction.

Sometimes, induction alone is insufficient, but the issue can be resolved using an
auxiliary lemma. In this example, to prove the lemma Success_chain, one should
prove the lemma Auxiliary_Success_chain first. See Section 9.3 for a detailed
explanation of this example, and Section 11.6.3 on how to come up with such lemmas
in general.

11.6 Termination and memory exhaustion 191

(1)
Loop(lid, kZero, k)

#x : Check[Loop(lid, kZero, k)]

Loop(lid, f(kZero), k)

Gen(seed, kZero)

#y : Gen_Step[ChainKey(kZero)]

Gen(seed, f(kZero))

(2)
Loop(lid, k, k.1)

#vr : Check[Loop(lid, k, k.1)]

Loop(lid, f(k), k.1)

Loop(lid, f(k), k.1)

#x : Check[Loop(lid, f(k), k.1)]

Loop(lid, f(f(k)), k.1)

Gen(seed, f(k))

#y : Gen_Step[ChainKey(f(k))]

Gen(seed, f(f(k)))

(3)
Loop(lid, k, k.1)

#vr : Check[Loop(lid, k, k.1)]

Loop(lid, f(k), k.1)

Loop(lid, f(k), k.1)

#x : Check[Loop(lid, f(k), k.1)]

Loop(lid, f(f(k)), k.1)

Gen(seed, f(k))

#y : Gen_Step[ChainKey(f(k))]

Gen(seed, f(f(k)))

Gen(seed, k)

#vr.1 : Gen_Step[ChainKey(k)]

Gen(seed, f(k))

(4)

Loop(lid, f(k), k.1)

#vr : Check[Loop(lid, f(k), k.1)]

Loop(lid, f(f(k)), k.1)

Loop(lid, f(f(k)), k.1)

#x : Check[Loop(lid, f(f(k)), k.1)]

Loop(lid, f(f(f(k))), k.1)

Gen(seed, f(f(k)))

#y : Gen_Step[ChainKey(f(f(k)))]

Gen(seed, f(f(f(k))))

Gen(seed, f(k))

#vr.1 : Gen_Step[ChainKey(f(k))]

Gen(seed, f(f(k)))

Loop(lid, k, k.1)

#vr.2 : Check[Loop(lid, k, k.1)]

Loop(lid, f(k), k.1)

Fig. 11.7: Repeating pattern: alternating additions of Loop and Gen

A third possible solution is to avoid the problematic cases altogether by either
manually avoiding the cases in an interactive proof, or by using a tailored heuristic
(see Chapter 16). This is not always possible: in the simple hash chain example, all
proof methods lead to the repeating pattern.

Another common issue is that sometimes solving some constraints causes large
case distinctions in the proof, with dozens of subcases. Since all subcases must be
eventually solved to conclude a proof (except if a counterexample is found earlier), it
can help to avoid solving these constraints early. Often it is not necessary to solve all
constraints to obtain the contradiction required to conclude a branch of the proof. In
such cases, delaying the solving of such constraints can speed up the proof search
enormously. To avoid solving such constraints, one can manually construct the proof
in interactive mode, or define a tailored heuristic (Chapter 16).

11.6.3 Using auxiliary lemmas

When Tamarin fails to prove a lemma, one can try to add auxiliary lemmas to prove
helpful sub-properties. An example of this was given in Section 9.3.

192 11 Common Workflows

There are different types of properties that can be useful to prove using auxiliary
lemmas. For example, by inspecting the (failing) proof of the lemma, one can
sometimes deduce a missing property, as in Section 9.3.

Another typical example concerns looping structures, where some fact is initialized
once, and then continuously updated. In such cases, writing an auxiliary lemma
stating that the use of this fact implies that it has been previously initialized is often
helpful. Such lemmas must usually be proven by induction.

A third example is invariants, for example, stating that some data shared among
different participants is always in sync, or that a certain value is only increasing, and
so on.

Which properties are useful to prove as auxiliary lemmas depends on the model and
the main properties being proven. Some trial and error may be needed. A good starting
point here is to inspect the failing proof in interactive mode and try to understand the
problematic cases.

11.6.4 Fine-tuning the model: finding the right abstraction

Making different modeling choices can have a large impact on Tamarin’s performance
and termination. For example, leaving out untrusted parties in the model and giving
the keys to the adversary instead can improve performance simply by reducing the
number of rules and thus the model’s size.

Moreover, abstracting details away can help Tamarin. For example, instead of
modeling counters explicitly, it can be advantageous to limit the model to the essential
requirements (restrictions stating that a counter can only increase, etc.). For more on
counters, see Section 7.2.5.

In particular, when it comes to modeling state, there are many ways to model the
same behavior, but the solution chosen can affect how difficult it is for Tamarin to
prove lemmas. For example, for trace properties, it is often easier for Tamarin to
reason about state modeled using restrictions rather than using linear facts. Note the
caveat that this is not necessarily true for equivalence proofs as restrictions often
complicate Tamarin’s reasoning.

Finally, one may find inspiration on how to model certain constructs in past research
papers that used Tamarin to solve specialized problems. For example, [103] shows
how to model parameterized systems, such as those occurring in group key agreement
schemes.

11.8 Common questions 193

11.7 Extensions and tools

There are several extensions that either work as a pre-processor for Tamarin or that
can be used to automate recurring tasks when handling large models with numerous
lemmas.

The most widely used Tamarin extension is SAPIC (“Stateful Applied Pi Calcu-
lus”) [34, 79], which is now integrated into Tamarin. In a nutshell, SAPIC takes
as input a protocol specification in a variant of the applied pi calculus (similar to
ProVerif), and compiles this to a Tamarin specification. It can also generate ProVerif
or DeepSec files, based on the same input. All translations are proven sound. This
means that one can prove different lemmas using different tools, and the results hold
for the initial model.

There is another, much simpler, tool that takes as input a subset of Alice & Bob style
specifications and translates them to Tamarin models [16].

The UT Tamarin [77] tool can be used to run Tamarin in parallel on different lemmas,
with different heuristics and timeouts, and to check the results against expected results.
This can be useful when working with large models to try out different theorem
proving options.

Finally, there are syntax highlighting modes for various editors, including Emacs,
vim, and Visual Studio Code. For more details, see the installation section of the
Tamarin manual online [107].

11.8 Common questions

We conclude this section by addressing some additional questions that users have
about Tamarin and its workflows.

11.8.1 Why doesn’t Tamarin merge rule instances?

Users new to Tamarin often wonder why Tamarin does not merge multiple rule
instantiations, which would simplify the attacks found by the tool. To ensure that no
possible solution is missed, Tamarin’s constraint solver always tries to construct
the most general possible solution. This has the side-effect that the counterexamples
Tamarin produces are not necessarily the simplest or shortest ones, but rather the
most general ones. For example, sometimes it might be possible to merge two rule
instances, or even two participants, and still have a valid counterexample. However,
as long as the constraints do not oblige Tamarin to merge the two rule instances, the
tool will not do so, as such a merger could remove some possible solutions and hence
affect correctness.

194 11 Common Workflows

11.8.2 When should I use K, KU, or KD?

The meaning of K action facts is defined by Tamarin’s semantics; particularly relevant
here is Section 3.1.8. In contrast, and as previously mentioned in Section 6.8.5, the
action facts KU and KD are only defined in the current version of Tamarin’s algorithm,
and their meaning might change in future updates of the tool. We therefore strongly
recommend only using K when specifying properties, as KU and KD have no well-
defined meaning in the semantics.

There are, however exceptions to the above. It can be useful in some cases to use
KU when specifying sources lemmas or intermediate (reuse) lemmas. The reason for
this is because, in Tamarin’s current algorithm, the KU action facts in a dependency
graph under-approximate the terms that an adversary has derived. This is also the
reason why KU is often used in sources lemmas, see Section 8.4. As long as the user
specifies their intended protocol properties using K, but without KU and KD, these
properties will be well-defined. KU and KD can be freely used in source lemmas or
intermediate reuse lemmas that help to prove the target properties: if Tamarin’s
algorithm verifies all properties in the file, the intended protocol properties hold,
independent of the exact meaning of KU or KD.

11.8.3 Why does autoprove not terminate, but repeatedly pressing 1 or b
does?

To explore the proof tree, Tamarin uses iterative deepening search with a strategy
where the bound is doubled at each iteration. An alternative strategy that sometimes
terminates more quickly is to run Tamarin using a breadth-first search strategy. This
is accomplished using the command-line parameter --stop-on-trace=BFS; see
Section 6.1.2 for more details. Thus, if an autoprove attempt does not terminate,
but manual exploration does, try running Tamarin with breadth-first-search or just
export and store the manual proof.

Chapter 12

Case Study: 5G-AKA

We now present a large case study where we use many of the previously introduced
features to model a complex real-world protocol. We chose the next generation mobile
communication key agreement protocol 5G-AKA as our example.

The following account is based on our published paper [14], co-authored by Basin,
Dreier, Hirschi, Radomirović, Sasse, and Stettler. Here we focus on the modeling
decisions taken for the core of the protocol, and how we wrote the Tamarin model
for it. Along the way, we showcase this with Tamarin code, exemplifying many of
the features previously introduced in this book. For interested readers, we refer to the
above paper for the presentation of the standard and how the core of the protocol was
extracted from the standard, as well as a comprehensive account of the protocol’s
properties.

The first part of any analysis of a real-world standard is reading the standard’s
documents, which in the case of 5G are comprised of four separate documents,
totaling 722 pages. From this, one extracts an overview of how the protocol is
intended to work, what messages are sent, and how they are composed. We describe
this in the next section, similar to [14], reusing diagrams from there.

Afterwards, we discuss how different parts of the protocol were modeled and analyzed
in Tamarin, and we draw conclusions.

12.1 Overview of 5G-AKA

5G is the name of the next generation, mobile communication network, which is
used by billions of users and their devices worldwide. 5G standardizes how handheld
mobile devices, such as cell phones and base stations, communicate with each other
using radio waves. It also specifies how the base stations provide wider network
access to the mobile devices. In particular, a user will usually only have a contract
with one mobile phone provider in their home country (called the Home Network),

195

196 12 Case Study: 5G-AKA

paying for a subscription to use their network. However, when traveling abroad, there
are usually no base stations operated by their provider. Instead, the user’s device will
connect to another provider’s network (called the Serving Network), for so-called
roaming access. Note that each Home Network provides a Serving Network for its
own and other users. Furthermore, to ensure that phone calls and other kinds of
communication stay secret, and that billing is authentic, there is a security protocol
standardized as part of 5G, called 5G-AKA. This security protocol, which is used for
key agreement, is what we modeled with Tamarin.

The core protocol thus involves three entities: the Subscriber, the Serving Network,
and the Home Network. Initially the Subscriber (in practice, their user equipment,
i.e., the mobile phone, or possibly its SIM card) and the Home Network share a
long-term symmetric key K, a user identifier SUPI, and each entity 𝑋 maintains
a counter called the sequence number SQN𝑋. Each entity has their own view of
the sequence number and their views may be desynchronized, which necessitates a
resynchronization protocol that we will describe later. We give an overview of main
entities in Table 12.1.

Subscriber User Equipment, e.g. phone or its SIM card, also called UE
SUPI Subscriber Permanent Identifier
SUCI Subscriber Concealed Identifier (the SUPI encrypted for the home network)

Serving Network Local network that the Subscriber is currently connected to
SNname Serving Network’s name

Home Network Network that the subscriber is subscribed to
idHN Home Network Identifier
pkHN Home Network’s public key

K Long-term symmetric key shared by the Subscriber and Home Network

Table 12.1: Main 5G-AKA entities and their meaning

We next provide an overview diagram of the protocol flow in Figure 12.1. The
Subscriber will learn the SNname of the Serving Network from a prior unsecured
message that is not depicted.

In the first message, the Subscriber (also called the User Equipment, UE) sends
their concealed identifier (SUCI) together with a unique identifier for their home
network idHN. The SUCI is built by taking the subscriber’s permanent subscription
identifier (SUPI) and asymmetrically (and randomized with some RS) encrypting the
SUPI under their home network’s public key pkHN. The resulting message is thus
<aenc(<SUPI, RS>, pkHN), idHN>.

The Serving Network forwards this message, together with their name SNname, to
the Home Network. The Home Network has the private key that is needed to decrypt
the asymmetric encryption and extract the SUPI. Note that the SUPI itself consists of
several fields, one of which is another identifier of the Home Network. The standard

12.1 Overview of 5G-AKA 197

Subscriber

K,SUPI,SQNUE,SNname

Serving Network

SNname

Home Network

K,SUPI,SQNHN

aenc(⟨SUPI, RS⟩, pkHN), idHN aenc(⟨SUPI, RS⟩, pkHN),SNname

new random R
MAC← f1(K, ⟨SQNHN, R⟩)
AK← f5(K,R)
CONC← SQNHN ⊕ AK
AUTN← ⟨CONC,MAC⟩
xRES∗ ← Challenge(K,R,SNname)
HXRES∗ ← SHA256(⟨R, xRES∗⟩)
KSEAF ← KeySeed(K,R,SQNHN,SNname)
SQNHN ← SQNHN + 1

R,AUTN,HXRES∗,KSEAFR,AUTN

⟨xCONC, xMAC⟩ ← AUTN
AK← f5(K,R)
xSQNHN ← AK⊕ xCONC
MAC← f1(K, ⟨xSQNHN, R⟩)
CHECK (i) xMAC = MAC and

(ii) SQNUE < xSQNHN

SQNUE ← xSQNHN
RES∗ ← Challenge(K,R,SNname)
KSEAF ← KeySeed(K,R, xSQNHN,SNname)

RES∗

if SHA256(⟨R,RES∗⟩) ̸= HXRES∗then abort

RES∗,SUCI

if RES∗ ̸= xRES∗ then abort

SUPI

Successful Authentication

If (i) and (ii) (Expected Response)

MACS← f1∗(K, ⟨SQNUE, R⟩)
AK∗ ← f5∗(K,R)
CONC∗ ← SQNUE ⊕ AK∗

AUTS← ⟨CONC∗,MACS⟩

’Sync Failure’,AUTS ’Sync Failure’,AUTS, R,SUCI

if CHECK(i) holds for MACS in AUTS
then SQNHN ← SQNUE + 1

If (i) and ¬(ii) (Synchronization Failure)

’Mac Failure’
If ¬(i) (MAC Failure)

Fig. 12.1: The 5G-AKA protocol. The communication between the Subscriber and
the Serving Network is over the air, and we assume the adversary has full access
to this channel. The communication between the Serving Network and the Home
Network is performed over a secure channel.

prescribes that the Home Network checks that the idHN matches the home network
identifier in the SUPI, which also serves to detect forged encryptions. Based on
the SUPI, the Home Network can now look up the shared long-term key K and the
sequence number SQNHN for that SUPI.

198 12 Case Study: 5G-AKA

At a high level, the Home Network now prepares a response for the Serving Network
consisting of four parts: a random value R, an authenticated challenge AUTN, a hash
of the expected response that the Subscriber must later send to the Serving Network
HXRES*, and the seed for key material, KSEAF, to be used between Subscriber and
Serving Network after authentication is successfully completed.

In more detail, the Home Network first samples a fresh random value R. The AUTN is
built from a concealed sequence number CONC and a message authentication code,
MAC, by pairing them. The concealed sequence number is the actual sequence number
the HN has xor-ed with a one-way function f5 whose arguments are the key K
and the random R, i.e., f5(K,R). The message authentication code is computed as
f1(K, <SQNHN, R>). The intention behind the MAC is that the right Subscriber
will be able to know this message came from their home network, check that the
sequence number is correct, and then create the expected response, discussed next.

The Home Network computes the expected response called xRES, which is stored,
but not shared with the Serving Network. This ensures that the Home Network gets
guarantees as well, once the Serving Network forwards the actual response. Essentially,
this prevents the Serving Network from claiming that a Subscriber of the Home
Network is using their services, when they are not. The Serving Network still receives
a hash of the expected response, called HXRES*, to be able to immediately abort when
receiving incorrect Subscriber answers. The expected response xRES is computed as a
function of the shared key K, the random value R, and the name of the Serving Network
SNname, as Challenge(K, R, SNname) for an appropriate function Challenge.
The key seed KSEAF is computed as KeySeed(K,R,SQNHN, SNname). Finally, the
Home Network increments the sequence number.

The Serving Network receives the four parts of the message from the Home Network,
and forwards R and AUTN to the Subscriber, storing HXRES* and KSEAF for later.

The Subscriber splits AUTN into the concealed sequence number xCONC and the MAC
xMAC. Using the received R, it computes f5(K,R) and uses this to extract the uncon-
cealed sequence number xSQNHN by XORing xCONC and f5(K,R). The Subscriber
then computes the MAC it expects, MAC = f1(K, <xSQNHN, R>). Following this,
the subscriber performs two checks: (i) that the received xMAC is the same as the
computed MAC for authentication purposes, and (ii) that the received sequence number
xSQNHN is strictly larger than the Subscriber’s stored sequence number SQNUE.

If both checks (i) and (ii) succeed, the protocol then continues in the expected flow.
We first describe this flow and return to the failed check cases afterwards. When both
checks succeed, the Subscriber is then convinced that it has received a fresh and
authentic challenge from its home network, and it computes the required response
as well as the shared key for later use. To do this, the Subscriber first updates its
view of the sequence number to the new, larger, number xSQNHN. It computes the
response RES* with the function Challenge applied to the shared key K, received
random value R, and the Serving Network name SNname. It computes the key seed

12.2 Modeling 5G-AKA in Tamarin 199

KSEAF for later communication as KeySeed(K, R, xSQNHN, SNname). Finally,
the computed response RES* is sent to the Serving Network.

The Serving Network receives the Subscriber’s RES* and checks that the hash of the
previously received randomness R and the received RES* results in the previously
stored HXRES*, as expected. Should this check fail, the Serving Network aborts. If
the check succeeds, the Serving Network forwards the value RES* and (again) the
concealed subscriber identity SUCI to the Home Network.

The Home Network just checks that the value RES* is the one it computed previously
as xRES* for this SUCI. If not, it aborts. If successful, it responds with the unconcealed
permanent identifier SUPI of the Subscriber. Note that this is not a protocol weakness,
but generally mandated by law.

If the Subscriber’s check (i) succeeded, but (ii) failed, the authentication was
successful, but the Subscriber and Home Network are out of sync, and therefore have
a different view of the sequence number. Thus, the re-synchronization protocol starts,
which is not described further here.

If the Subscriber’s check (i) failed, there is a MAC failure, triggering the Subscriber
to abort and sending a last message with the constant ’MAC_FAILURE’.

12.2 Modeling 5G-AKA in Tamarin

Note that we provide the full 5G model, as 5G_AKA.spthy, in the accompanying
collection of Tamarin theories that come with this book [12]. You can use that file
as a detailed reference, and you can run it yourself with Tamarin directly.

Given the described 5G-AKA flows, one must still make several high-level choices
and assumptions that lead to different models. The paper [14] analyzes a range of
these models including, for example, different channel models and versions with and
without fixes.

In this section, we present the version of 5G-AKA without our proposed fixes
from [14], in what we call the binding channel version. This version makes the
assumption that the channels internal to the home network actually work as one would
expect, which is not explicitly specified in the standard.

At the highest level, as seen in Figure 12.1 and the protocol’s description, the protocol
involves three parties and more than ten message flows, including branching after
checking the response. This results in a much larger model than those made for
typical, small, two-party protocols. Moreover its traces, viewed in interactive mode,
are also longer.

From the modeling perspective, the Serving Network is the easiest to model, because
it has no long-term state beyond its identifier, and it communicates over secure
channels to the Home Network. In contrast, the Subscriber and Home Network have

200 12 Case Study: 5G-AKA

permanent state, namely the shared key material, as well as mutable state, namely the
sequence number. This sequence number and associated state is not just inside one
session (or run) of the protocol, but across all runs for a Subscriber (respectively the
Home Network for a fixed Subscriber). This means that the runs are interdependent,
and this can cause looping behavior in Tamarin’s backwards search. Using auxiliary
lemmas, as explained in Section 12.2.7, solves this problem.

To model the cryptographic primitives, we will use both built-in and user-defined
operators. To model the secure communication between the Serving Network and
the Home Network, we use secure channels. There are also rules to initialize all
the entities, set them up with key material, and have bindings between Subscribers
and their Home Networks. As part of the threat model, we consider various forms
of compromise. Hence there are reveal rules that leak information to the adversary,
which are marked in the trace by action facts. Additionally, counters are modeled for
both the Subscriber and the Home Network. Finally, we have rules for each of the
parties’ send and receive steps.

12.2.1 Threat model for 5G-AKA

The Subscriber and Serving Network communicate over the air. Hence our threat
model captures that the adversary can interfere with communication, which we
model as a standard, active, Dolev-Yao adversary. Additionally, even for the wired
connection between the Serving Network and the Home Network, one wants the
protocol to provide some built-in security rather than only relying on the expected
properties of the channel used (presumably TLS). Moreover, different parties could
also be compromised. This includes a Subscriber’s SIM card leaking its key under
close inspection, a Serving Network base station being physically manipulated, or
some attack inside the servers of a Home Network. In our threat model, we assume
the adversary cannot guess sequence numbers, but it can manipulate any sequence
numbers it learns, as it wishes.

Note that 5G-AKA’s main security goals can only be obtained when communicating
with a non-compromised party. The underlying idea of modeling compromised
parties is that when in a specific run some non-compromised parties communicate,
their security should not depend on the compromise of other parties. We typically
formalize rules that model the compromise of any party, and then specify the goal for
non-compromised parties as part of the security property.

12.2.2 Functions and equations

Prior to giving examples of rules, we first describe the equational theories and function
symbols used. Namely, we use the built-in functions for asymmetric encryption,

12.2 Modeling 5G-AKA in Tamarin 201

multisets, and exclusive-or. Note that in this model, natural numbers are represented
by multisets of 1 added together. For newer models, we instead recommend modeling
natural numbers using the approach described in Section 11.3.4, which was added to
Tamarin after this work was done.

The 5G-AKA protocols also make use of so-called Key Derivation Functions (KDF)
that are used to derive a secret key from a secret and optionally another input, such as
a label. We model these as function symbols without additional equations, reflecting
that (i) one cannot infer the inputs to the KDF from its output, and (ii) KDF functions
are collision-resistant. Finally, we declare additional functions, all of which are not
invertible, and have different arities, i.e., different numbers of arguments.
builtins:

asymmetric-encryption, multiset, xor

functions:
// AKA functions (TS 33.102)
f1/2, // MAC-function --> MAC
f2/2, // MAC-function --> RES
f3/2, // KDF --> CK
f4/2, // KDF --> IK
f5/2, // KDF --> AK (Hide Sqn)
f1_star/2, // MAC-function --> MAC-S
f5_star/2, // KDF --> AKS (Hide Sqn)

// 3GPP KDFs (TS 33.501)
KDF/2, // KDF --> K_ausf, K_seaf, XRES*
SHA256/2 // KDF --> HXRES*

Because we provide no equations for these user-defined functions, they will all be
treated as one-way functions.

12.2.3 Channel model

Next, we present the model of the secure channels that are used between the
Serving Network and the Home Network. The 5G standard expects them to use, e.g.,
TLS 1.3 [101], to establish and maintain a secure and replay-protected channel. The
analysis of the full TLS 1.3 model [45] is already extremely challenging, and if we
were to directly inline a detailed TLS model into our 5G-AKA model, the analysis
would not be tractable. We therefore choose to abstract TLS as a black-box, secure
channel. Additionally, this choice makes our result for 5G-AKA independent of the
protocol-specific details of TLS, and also independent of the protocol that the Serving
and Home Network actually use in practice. Essentially, this choice means that the
wireless channel between the Subscriber and the Serving Network is controlled by
the adversary, while the channel between a Serving Network and a Home Network
has some level of protection.

We already presented generic secure channels in Section 10.4, but we use a variation
in this work that includes replay protection. The SndS is a drop-in replacement for

202 12 Case Study: 5G-AKA

where one would put an Out for an unprotected channel, and RcvS replaces the In.
We present the channels between two non-compromised parties first, and then discuss
them.
rule send_secure:

[SndS(~cid,A,B,m)] // ~cid denotes a channel identifier: should always
// be a fresh name (possibly attacker-created)

-->
[Sec(~cid,A,B,m)]

rule receive_secure:
[Sec(~cid,A,B,m)]
-->
[RcvS(~cid,A,B,m)]

The two rules translate a secure send by a party to a secure receive by another party,
using a shared fresh value as the channel id, and including sender, recipient and
actual message. The rules for participants in a protocol will then use SndS as the
replacement for Out and RcvS instead of In. The adversary learns nothing about
these messages, senders, and recipients, and cannot replay messages because the Sec
fact is not persistent.

Next, we introduce rules that model compromised parties that have access to the
secure channels.
rule secureChannel_compromised_in:

[In(<~cid,A,B,x>)] // attacker can learn cid with
// secureChannel_compromised_out

--[Rev(A,'secureChannel'),
Injected(x)

]->
[Sec(~cid,A,B,x)]

rule secureChannel_compromised_out:
[Sec(~cid,A,B,m)]
--[Rev(B,'secureChannel')]->
[Out(<~cid,m>)]

The first rule models an adversary that compromised a sending endpoint A, and injects
a message x into the channel between A and B for session cid. The second rule
models an adversary that compromised an endpoint B, and receives a message m from
such a channel. The respective compromised parties are reflected in the first argument
of the Rev actions of the respective rules. We will show later how the properties are
made conditional on the reveals to match the threat model. On the one hand, we can
now evaluate whether this truly must be a secure channel, and learn which properties
hold in this case. On the other hand, if the channel does not actually need to be secure,
we will also learn that in our analysis.

12.2 Modeling 5G-AKA in Tamarin 203

12.2.4 Key generation and compromise

12.2.4.1 Key generation

The initial setup uses multiple rules. The first rule init_servNet creates the Serving
Network; we do not show it in detail as it produces no key material.

The following rule initializes a Home Network.
rule init_homeNet:

[Fr(~sk_HN),
Fr(~idHN)]

--[HomeNet(~idHN)]->
[!HSS(~idHN, ~sk_HN),
!Pk(~idHN, pk(~sk_HN)),
Out(<~idHN, pk(~sk_HN)>)]

The rule’s premises generate a unique name idHN and a private key sk_HN for
this Home Network. An action fact HomeNet(idHN) is logged as well. The rule’s
conclusion creates the persistent facts !HSS and !Pk, each binding the Home Network
name to its keys, the first to the private key and the second to the public key. Finally,
the new Home Network’s name and its public key are output to the adversary, as they
are publicly known.

Next we look at how a Subscriber is initialized, and immediately bound to its assigned
Home Network.
rule add_subscription:

[Fr(~supi),
Fr(~k),
Fr(~sqn_root),
!HSS(~idHN, ~sk_HN)]

--[
// Restriction
Subscribe(~supi, ~idHN),

// Auxiliary lemmas
Sqn_Create(~supi, ~idHN, ~sqn_root),
CreateUser(~supi, ~k, ~idHN)

]->
[!Ltk_Sym(~supi, ~idHN, ~k, ~sqn_root),
Sqn_UE(~supi, ~idHN, ~sqn_root+'1', ~sqn_root, '1'),
Sqn_HSS(~supi, ~idHN, ~sqn_root+'1', ~sqn_root, '1')]

The rule creates a fresh identifier supi, a fresh shared key k with the Home Network,
and a random starting value sqn_root for the sequence number. Starting the sequence
number from a fresh value captures the threat model assumption that the adversary
cannot guess sequence numbers. This rule also has three action facts. The first of
them, Subscribe is used to bind this new Subscriber, identified by supi to a Home
Network, identified by idHN. We define an additional restriction that enforces that
each supi can only be initialized once, and is bound to a particular Home Network.
The second and third action fact additionally bind the starting sequence number,

204 12 Case Study: 5G-AKA

respectively the shared key, to the Subscriber and Home Network combination and
are used in different auxiliary lemmas.

In terms of state facts in the rule’s conclusion, a persistent fact Ltk_Sym stores the
identifiers for the Subscriber and the Home Network, together with their shared key,
and for technical reasons the starting sequence number between them. Then a regular
fact each for the Subscriber and the Home Network binds both their names, the
current counter, which starts at the counter start variable plus one, then the counter
start variable, and finally what has been added to it, namely one.

12.2.4.2 Key compromise

There are four key compromise rules. One rule is for the shared key k between
the Home Network and the Subscriber, called reveal_Ltk_Sym, which we focus
on below. There are two additional rules, which are similar, that reveal the initial
sequence number counter and the Subscriber’s identifier. Finally, there is also a rule
to reveal the Home Network’s private key.
rule reveal_Ltk_Sym:

[!Ltk_Sym(~supi, ~idHN, ~k, ~sqn_root)]
--[

// Security properties
Rev(~supi, <'k', ~k>),
Rev(~idHN, <'k', ~k>)

]->
[Out(~k)]

In this rule, the persistent fact contains the names of the Subscriber and the Home
Network, as well as their shared key k and the sequence number’s starting value.
This rule reveals their shared key to the adversary by outputting it with Out. The
rule’s action facts record that this shared key was revealed from both the viewpoint
of the Subscriber and the Home Network. Looking at the subscriber in more detail,
Rev(supi, <’k’, k>) identifies the subscriber named supi and reveals k of type
key. This is shown by the constant ’k’, paired with the actual value. This is helpful
later for property specification.

12.2.5 Counters

To model the sequence numbers used in 5G-AKA we include them in our model. We
have already seen how sequence numbers are initially set up. We now examine a rule
that allows the Subscriber to increase its sequence number arbitrarily. This is used to
get into a desynchronized state between the Subscriber and the Home Network, to
check the functioning of the resynchronization protocol.
rule ue_sqn_increase:

[Sqn_UE(~supi, ~idHN, Sqn, ~sqn_root, count),

12.2 Modeling 5G-AKA in Tamarin 205

In(m)]
--[

// Open chains
Sqn_UE_Invariance(~supi, ~idHN, Sqn+m, ~sqn_root, count+m),

// Auxiliary lemmas
Sqn_UE_Change(~supi, ~idHN, Sqn+m),

// Executability
Sqn_UE_Desync()

]->
[Sqn_UE(~supi, ~idHN, Sqn+m, ~sqn_root, count+m)]

In this rule, the premise fact Sqn_UE is simply modified in the conclusion, with the
number m input from the network added to the current sequence number at the third
position, and to the number of times the counter has been incremented, stored in the
fifth position. The action facts are more interesting here. They include the first action
fact Sqn_UE_Invariance used for a sources lemma (Section 8.4) that we need to
give Tamarin to reason about the initial creation of sequence numbers and the number
of times they have been incremented. The second action fact Sqn_UE_Change is
used for an auxiliary lemma that checks that all sequence numbers only increase.
The last action fact just states that there was a desynchronization, which we use in
executability lemmas to check that the protocol can successfully re-synchronize after
being in a desynchronized state.

12.2.6 Example protocol rules

We next consider how to model the Subscriber based on the protocol description
shown in Figure 12.1, and we present the resulting rules. 5G attach is the initial
procedure where the Subscriber connects to a 5G network. We focus on the scenario
where this network attachment succeeds and we highlight some of the resulting rules.
For the second rule we present, we explain, step by step, how we constructed it.

Looking at the protocol description, we expect the Subscriber to start attaching itself
to a serving network by sending its first message. It also must remember its state,
namely that it now waits for a response. To produce its message, it must first access
its long-term storage for the shared key and its identifier. This is modeled in the
following rule, which represents the Subscriber starting a new session with a Serving
Network to attach itself and receive service.
rule ue_send_attachReq:

let
suci = < aenc{<~supi, ~R>}pk_HN, ~idHN>
msg = suci

in
[!Ltk_Sym(~supi, ~idHN, ~k, ~sqn_root),
!Pk(~idHN, pk_HN),
Fr(~R),
Fr(~tid)]

206 12 Case Study: 5G-AKA

--[
// Executability
Start_UE_Session(~supi)

]->
[St_1_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root),
Out(msg)]

The first let binding captures the computation of the concealed subscription identifier
suci as explained in the high-level overview. The message msg sent is then actually
just the suci, as stated in the second let binding, but we use the extra name for
consistency with other rules.

In the premises, this rule looks up the Subscriber’s information in !Ltk_Sym,
importantly its own identifier supi and its Home Network identifier idHN. From the
state fact !Pk, the rule then gets the public key of the Subscriber’s Home Network.
As an alternative design option, this information could have instead been stored
inside the Subscriber information. However, as it is in a persistent fact, this separate
lookup makes no difference for this rule. Two fresh values are sampled as well.
One value, tid, which is the thread identifier, is stored in the resulting state fact in
the conclusion. The other value, R, is used to make the asymmetric encryption of
supi non-deterministic, by including it in a pairing there. Thus, an adversary cannot
compare two sent suci values and determine whether they come from the same
Subscriber.

The rule’s single action fact states that a new session was started. For the conclusions,
in St_1_UE we store the state of the Subscriber (also called user equipment, thus the
UE) after this first step. The Subscriber is now in the state where it can perform the
next step in the protocol, modeled with the rule explained and shown below.

This next rule models that the Subscriber receives the response to the previously
presented rule for it to attach to a Serving Network. This message comes from the
Serving Network, which in the meantime should have exchanged messages with
the Home Network. As per the protocol description, the Subscriber must receive
such a message, perform some derivations and checks, and determine which of three
cases applies. In our model, we chose to have separate rules for each of the three
cases (success, synchronization failure, and MAC failure) formalized with precise
conditions, so they apply whenever the input has the right form. We show next just
the version of the second rule for the Subscriber, which performs these checks and
covers the case where all the checks succeed. As seen in the protocol description, the
Subscriber has its view of the shared sequence number. Thus, in this rule we use the
state fact for the Subscriber’s view of the sequence number, Sqn_UE, which is used
across multiple sessions. This represents the UE’s mutable state. This is something that
is usually not part of smaller protocols and it leads to considerable proof complexity,
which we will manage by proving auxiliary lemmas.

Given the rule’s considerable complexity, we first present a simplified version of the
rule showing only the left-hand and right-hand sides. We also omit the action facts
and the let binding used to give an initial, high-level overview of the state transition.

12.2 Modeling 5G-AKA in Tamarin 207

We also include line numbers (consistent between the presentation of the separate
parts of the rule, so it is easier to follow), which are used for later reference.
1 rule ue_receive_authReq_freshness_success_send_authResp:

2

18 [St_1_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root),
19 Sqn_UE(~supi, ~idHN, SqnUE, ~sqn_root, count),
20 In(msgIn)]

21

47 [St_2_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root, idSN, K_seaf),
48 Out(msgOut),
49 Sqn_UE(~supi, ~idHN, SqnHSS, ~sqn_root, count+dif)]

For the left-hand side, in line 18, we see the lookup of the State St_1_UE that was
produced in the first rule. In line 19, we see that the sequence number is stored by the
UE in a state fact that is looked up as well. Lastly, in line 20 we see the input of a
message, referred to as msgIn, which will be expanded in the let binding we later
show.

On the right-hand side, in line 47 we see the next step of the UE’s state for this attach,
inside St_2_UE, which now additionally stores the identifier of the serving network,
idSN, and the computed key K_seaf, which will be expanded in the let binding as
well. The response is sent out as msgOut in line 48, which is expanded in the let
binding that we will show soon. Finally, in line 49, the stored sequence number fact
is updated by incrementing with the difference dif.

Let’s look again at the left-hand side, now including the let bindings:
2 let
3 // Input, checks
4 SqnHSS = SqnUE + dif // check freshness
5 AK = f5(~k, RAND)
6 MAC = f1(~k, <SqnHSS, RAND>) // check on the MAC
7 AUTN = <SqnHSS XOR AK, MAC>
8 SNID = <'5G', idSN>
9 msgIn = < RAND, AUTN, SNID >

10

17 in
18 [St_1_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root),
19 Sqn_UE(~supi, ~idHN, SqnUE, ~sqn_root, count),
20 In(msgIn)]

These let bindings are used to make the computations and checks in the “Expected
Response” box in Figure 12.1. The msgIn that is received in line 20 is actually a
triple, as expanded in line 9. Line 4 selects the sequence number value SqnHSS to
use, which is larger than the one stored by the UE. Line 5 computes the key AK
from the randomness RAND received in the message, and the stored long-term key
k from the state fact in line 18. In line 6, the MAC is computed from the long-term
key, sequence number, and randomness. The received AUTN is then implicitly, using
pattern matching, checked to have the expected form in line 7. Namely, AUTN must be

208 12 Case Study: 5G-AKA

a pair consisting of the exclusive-or of the sequence number SqnHSS and the key AK,
and the computed message authentication code MAC. To summarize, the let bindings
ensure that the received message is of the right form, compared to Figure 12.1, and
does all the necessary checks using pattern matching.

Now we look at the remaining part of the let binding, which is used for the right-hand
side:
10 // Output
11 RES = f2(~k, RAND)
12 IK = f4(~k, RAND)
13 CK = f3(~k, RAND)
14 RES_star = KDF(<CK, IK>, <SNID, RES, RAND>)
15 K_seaf = KDF(KDF(<CK, IK>, <SNID, SqnHSS XOR AK>), SNID)
16 msgOut = RES_star

17

47 [St_2_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root, idSN, K_seaf),
48 Out(msgOut),
49 Sqn_UE(~supi, ~idHN, SqnHSS, ~sqn_root, count+dif)]

Here we see that msgOut in line 16 is built in lines 11-14 from the known long-term
key k, the received randomness RAND, and uses the serving network identifier from
the let binding on the receiving side seen prior.

The final part that we have not yet shown contains the action facts, which are as
follows:
21 --[
22 // Open chains
23 Sqn_UE_Invariance(~supi, ~idHN, SqnHSS, ~sqn_root, count+dif),
24

25 // Auxiliary lemmas
26 Sqn_UE_Change(~supi, ~idHN, SqnHSS),
27 Sqn_UE_Use(~supi, ~idHN, SqnHSS),
28 KSEAF(K_seaf),
29

30 // Security properties
31 Running(~supi, idSN,<'SEAF','UE',<'RES_star', RES_star>>),
32 Running(~supi, idSN,<'SEAF','UE',<'K_seaf', K_seaf>>),
33 Running(~supi, idSN,<'SEAF','UE',<'supi', ~supi>>),
34 Running(~supi, ~idHN, <'HSS','UE', <'K_seaf', K_seaf>>),
35 Running(~supi, ~idHN, <'HSS','UE', <'RAND', RAND>>),
36 Secret(<'UE', ~supi>, 'key', K_seaf),
37 Secret(<'UE', ~supi>, 'supi', ~supi),
38 Commit(~supi, ~idHN, <'UE','HSS',<'AUTN', AUTN>>),
39 Commit(~supi, ~idHN, <'UE','HSS',<'supi', ~supi>>),
40 Commit(~supi, ~idHN, <'UE','HSS', <'K_seaf', K_seaf>>),
41 Commit(~supi, idSN, <'UE','SEAF',<'K_seaf', K_seaf>>),
42 Commit(~supi, idSN, <'UE','SEAF',<'RAND', RAND>>),
43 Honest(~supi),
44 Honest(~idHN),
45 Honest(idSN)
46]->

12.2 Modeling 5G-AKA in Tamarin 209

The action facts in general must be considered in the context of the lemmas where
they are used, and we point out here which properties each of them belongs to. In
line 23 we have the action fact that is used for removing partial deconstructions (also
called open chains), i.e., in a sources lemma, as described in Section 8.2. The action
facts in lines 26-28 are used in auxiliary lemmas that are reused for proof generation
speedup; specifically the action KSEAF (Line 28) records the value of the derived key.
The remaining action facts are used in different security properties. The Honest ones
are used to ensure that the specifically named parties are not compromised when
an agreement or secrecy property based on this rule is checked. The Secret ones
are for secrecy lemmas, while the Commit ones are for agreement properties from
the view of the UE. The Running ones are used by agreement properties from other
parties’ views.

We conclude by presenting the entire rule at once, and we will also comment on the
protocol’s continuation.
1 rule ue_receive_authReq_freshness_success_send_authResp:
2 let
3 // Input, checks
4 SqnHSS = SqnUE + dif // check freshness
5 AK = f5(~k, RAND)
6 MAC = f1(~k, <SqnHSS, RAND>) // check on the MAC
7 AUTN = <SqnHSS XOR AK, MAC>
8 SNID = <'5G', idSN>
9 msgIn = < RAND, AUTN, SNID >

10 // Output
11 RES = f2(~k, RAND)
12 IK = f4(~k, RAND)
13 CK = f3(~k, RAND)
14 RES_star = KDF(<CK, IK>, <SNID, RES, RAND>)
15 K_seaf = KDF(KDF(<CK, IK>, <SNID, SqnHSS XOR AK>), SNID)
16 msgOut = RES_star
17 in
18 [St_1_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root),
19 Sqn_UE(~supi, ~idHN, SqnUE, ~sqn_root, count),
20 In(msgIn)]
21 --[
22 // Open chains
23 Sqn_UE_Invariance(~supi, ~idHN, SqnHSS, ~sqn_root, count+dif),
24

25 // Auxiliary lemmas
26 Sqn_UE_Change(~supi, ~idHN, SqnHSS),
27 Sqn_UE_Use(~supi, ~idHN, SqnHSS),
28 KSEAF(K_seaf),
29

30 // Security properties
31 Running(~supi, idSN,<'SEAF','UE',<'RES_star', RES_star>>),
32 Running(~supi, idSN,<'SEAF','UE',<'K_seaf', K_seaf>>),
33 Running(~supi, idSN,<'SEAF','UE',<'supi', ~supi>>),
34 Running(~supi, ~idHN, <'HSS','UE', <'K_seaf', K_seaf>>),
35 Running(~supi, ~idHN, <'HSS','UE', <'RAND', RAND>>),
36 Secret(<'UE', ~supi>, 'key', K_seaf),
37 Secret(<'UE', ~supi>, 'supi', ~supi),
38 Commit(~supi, ~idHN, <'UE','HSS',<'AUTN', AUTN>>),
39 Commit(~supi, ~idHN, <'UE','HSS',<'supi', ~supi>>),

210 12 Case Study: 5G-AKA

40 Commit(~supi, ~idHN, <'UE','HSS', <'K_seaf', K_seaf>>),
41 Commit(~supi, idSN, <'UE','SEAF',<'K_seaf', K_seaf>>),
42 Commit(~supi, idSN, <'UE','SEAF',<'RAND', RAND>>),
43 Honest(~supi),
44 Honest(~idHN),
45 Honest(idSN)
46]->
47 [St_2_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root, idSN, K_seaf),
48 Out(msgOut),
49 Sqn_UE(~supi, ~idHN, SqnHSS, ~sqn_root, count+dif)]

After this rule is executed, the Subscriber can later do a key confirmation step. The
rule for this step is not shown, but it is the reason why the new state St_2_UE needs
to be stored.

We do not show the two alternatives for this Subscriber rule. Those are used in case
either the MAC check fails, or the sequence number is not accepted because it is too
small. The rule shown was the version that forced both checks to succeed, so there is
a rule taking care of each eventuality.

12.2.7 Proof effort

In terms of proof effort, completing all the work of understanding the standard,
protocol modeling, and verifying such a complex protocol takes many person-months.
Concretely, we have written on the order of 300 lines of custom heuristics, which we
elaborate on in Section 12.2.10.

The majority of the effort involved coming up with auxiliary lemmas, building upon
each other, which are used as stepping stones to simplify the proofs of the desired
properties. The auxiliary lemmas include three sources lemmas to solve partial
deconstructions (see Chapter 8), which were manually found (as the work on 5G
predates the work on --auto-sources), and four reuse lemmas, where two of the
latter use induction.

We showcase one of the reuse lemmas here.
lemma sqn_ue_unique [reuse, hide_lemma=sqn_ue_src, hide_lemma=sqn_hss_src]:

" All supi HN Sqn #i #j.
Sqn_UE_Use(supi, HN, Sqn)@i & Sqn_UE_Use(supi, HN, Sqn)@j

==> #i = #j "

This lemma shows that a Subscriber only uses a sequence number exactly once. The
lemma encodes this by specifying that for every two instances of Sqn_UE_Use with
the same Subscriber and Home Network and sequence number, happening at time
points i and j, the two time points are actually the same.

Note that this lemma is marked reuse, and hides two of the reuse lemmas that precede
it in the input file (not shown here) to improve performance. This is described further
in Section 9.2.

12.2 Modeling 5G-AKA in Tamarin 211

12.2.8 Executability

To increase confidence in our model’s accuracy, we wrote four executability lemmas.
These lemmas state that various expected executions are indeed possible in the model.
These executions include runs with (or without) key confirmation, and with (or
without) re-synchronization. The following is an example.
// This lemma shows a normal execution without resync.
// proof (automatic) (~30 sec)
lemma executability_honest[heuristic={executability_honest}]:

exists-trace
" Ex #i. SEAF_End()@i

& not (Ex X data #r. Rev(X,data)@r)
& (All supi HN sqn_root #i. Sqn_Create(supi, HN, sqn_root)@i

==> not (Ex #j. K(sqn_root)@j))
& (All HN1 HN2 #j #k. HomeNet(HN1)@j &

HomeNet(HN2)@k ==> #j = #k)
& (All S1 S2 HN1 HN2 #j #k. Subscribe(S1, HN1)@j &

Subscribe(S2, HN2)@k ==> #j = #k)
& (All SNID1 SNID2 #j #k. Start_SEAF_Session(SNID1)@j &

Start_SEAF_Session(SNID2)@k ==> #j = #k)
& (All UE1 UE2 #j #k. Start_UE_Session(UE1)@j &

Start_UE_Session(UE2)@k ==> #j = #k)
& (All HN1 HN2 #j #k. Start_HSS_Session(HN1)@j &

Start_HSS_Session(HN2)@k ==> #j = #k)"

The purpose of such lemmas is not to prove the absence of some undesired behaviors;
rather, we aim to prove that certain expected normal behaviors are indeed possible
within our Tamarin model. This is why we specified an exists-trace lemma.

In this lemma, we require the protocol execution to have SEAF_End in the trace,
which means the protocol has run to its conclusion to the Serving Network’s
satisfaction. Because we want to show there exists a normal execution, without
adversary interference, we forbid any data reveals via Rev, and we disallow revealing
the sequence number of any created mapping from the Subscriber to the Home
Network. We model that a normal execution only requires a single instance of each
entity (Subscriber, Serving Network, and Home Network) that each starts one session.
All of these limitations help Tamarin to find a nice, clean-looking execution without
adversary involvement and with all parties just running the protocol once. The lemma
verification succeeds and produces such an execution, which can then be inspected
using Tamarin’s GUI.

As mentioned previously, proving executability lemmas helps catch modeling mistakes,
which might otherwise be missed. For example, if a protocol is not executable, then all
secrecy statements that require the protocol to have an executable run are vacuously
true.

212 12 Case Study: 5G-AKA

12.2.9 Properties

We have picked one property to look at in more detail. It turns out that this lemma is
violated, meaning there is an attack for it. The lemma is as follows.
lemma weakagreement_ue_seaf_noRev [heuristic={weakagreement_ue_seaf_noRev},

hide_lemma=sqn_ue_nodecrease, hide_lemma=sqn_ue_src, hide_lemma=sqn_hss_src]:
" All a b t #i. Commit(a,b,<'UE','SEAF',t>)@i

==> (Ex t2 #j. Running(b, a, t2)@j)
| (Ex X data #r. Rev(X,data)@r & Honest(X)@i) "

We model that the Subscriber has weak agreement with the Serving Network, under
the assumption that no data was revealed for any party that is marked as needing to
be non-compromised in the rule where the Commit is made. Note that the timepoint
i used for the Commit is the same as that for the Honest fact in the right-hand side
of the implication. The property requires that for any Commit there is a Running of
the partner. However, this turns out to be false, as can be seen in the counterexample
Tamarin produces.

There are many more properties that this protocol should satisfy and they are modeled
in the usual way for agreement properties. However, for space reasons we will not
describe these further. The detailed results for the 5G-AKA protocol can be found in
the publication [14].

12.2.10 Tactics and oracles

Tamarin’s built-in proof search will sometimes fail to find a proof in reasonable
time and memory (or at all), even when a relatively simple sequence of proof steps
exists. In such cases, the user can then guide Tamarin interactively. Although this
can be quite effective, it can also become tedious and the proofs are hard to reproduce.
Hence, Tamarin allows users to specify heuristics programmatically, by encoding
user choices as tactics (see Section 16.3) or oracles (see Section 16.4). Essentially,
these serve to prioritize proof methods, thereby guiding the proof search. Here we
focus on an example and show how to develop an appropriate heuristic that can be
specified using either mechanism.

For the lemma sqn_ue_invariance, we will describe what happens in two proof
attempts: one using the default heuristic, and the other our dedicated oracle.
lemma sqn_ue_invariance [use_induction, sources, heuristic={sqn}]:

" All supi HN Sqn sqn_root count #i.
Sqn_UE_Invariance(supi, HN, Sqn, sqn_root, count)@i

==> sqn_root + count = Sqn"

In both attempts, we start with an induction and a simplify step, leading to one open
case where we are left with two possible choices.
1. solve((last(#i)) ∥ ((count++sqn_root) = Sqn)) // nr. 1

12.3 Conclusions and general insights 213

2. solve(Sqn_UE_Invariance(supi, HN, Sqn, sqn_root, count) @ #i) // nr. 0

These have been prioritized by Tamarin’s default heuristic as shown above. As such,
using option 1, the next proof step will resolve the case split between the inductive last
time point and the form of the sequence number, which turns out not to be necessary
(our oracle version will always just delay this option and is therefore more efficient).
After solving option 1, only one case remains open, at which point the current second
choice is the only proof step applicable, and thus must be solved. Solving what is
currently option 2 results in three cases to analyze in both versions of the proof
attempt, i.e., the one with and the one without the oracle. However, with the oracle,
Tamarin has used one fewer step and skips option 1 entirely.

Of the three resulting cases, we will discuss just the first case. There we get the
following choices (order shown as given by the default heuristic).
1. solve(St_1_UE(~tid, ~supi, ~idHN, ~k, ~sqn_root) ▶0 #i)

// nr. 3 (from rule ue_receive_authReq_fail_freshness_send_sync_failure)

2. solve(!KU(f1(~k, <SqnHSS, RAND>)) @ #vk.5) // nr. 10

3. solve(splitEqs(0)) // nr. 2

4. solve(Sqn_UE(~supi, ~idHN, Sqn, ~sqn_root, count) ▶1 #i)
// nr. 4 (from rule ue_receive_authReq_fail_freshness_send_sync_failure
// (loop breaker)

We note that in the oracle version, the skipped possible proof step is also there as a
choice, but it is ignored. Both versions continue with the choice 1, solving St_1_UE.
This leads to just one case with the previous choices 2-4 remaining in both. The
oracle version will pick choice 4, resolving the source of Sqn_UE. This leads to
four cases, which are immediately closed, finishing this sub-proof. In contrast, the
standard heuristic would pick choice 2 above, resulting in ten open cases, which
would require substantial reasoning to solve. Simply letting Tamarin run from here,
with the default heuristic, also does not finish the sub-proof within a reasonable time,
i.e., a few minutes.

The choices explained here that can be taken manually are encoded either as oracles
or tactics and used by Tamarin to complete the proof quickly. Similar, manually
derived, heuristics, encoded as oracles or tactics, are helpful in many other lemmas.
Unfortunately, making the right choice is not easy. It requires experimentation and
experience using Tamarin to gain intuition into when specific sub-proofs are unlikely
to be successful and could profit from manual intervention. We know of no easy way
to automate this in Tamarin, as otherwise we would have done so.

12.3 Conclusions and general insights

This case study illustrates the approach taken, and some of the modeling choices made,
when modeling real-world protocols of considerable complexity. For such protocols,

214 12 Case Study: 5G-AKA

considerable time is required for constructing the proofs themselves, as when proof
attempts fail, one must diagnose the reasons for this. This involves inspecting partial
proofs in Tamarin’s GUI to identify those proof states that Tamarin struggles with.
Here one benefits strongly from Tamarin’s support for interactive theorem proving.
Afterwards, to assist Tamarin, reuse lemmas, induction, or even the development of
oracles or tactics may be necessary.

We mentioned at this book’s start that Tamarin is a living system, undergoing
evolution and improvement. This case study bears witness to this. While the overall
approach taken is illustrative of how one models and verifies such protocols, support
for different equational theories and proof automation has been improved since this
case study was carried out, and this is documented elsewhere in this book.

For the 5G-AKA model in particular, we have seen that encoding natural numbers
as multisets is not ideal, as the state becomes hard to read. This fact led to work
that extended Tamarin to support the natural numbers, together with support for
reasoning about subterms. Subterm reasoning on numbers can be used to reason
about ordering relations, for example, which number is smaller than or larger than
another. And this in turn simplifies proofs requiring such orderings. Prior to these
additions, e.g., in the 5G-AKA model, additional restrictions were used to specify
such relations. Thus, we would use these features now if we were to redo this work
and the resulting models would likely be faster to analyze and the modeling would be
less error-prone.

Another point needing improvement is that the use of oracles in our model was
time-consuming and difficult. It required understanding where proofs will fail to
terminate, then selecting better alternative proof steps by hand that will lead to
termination, and then encoding these choices as oracles to be used by Tamarin.
To simplify such processes, Tamarin was recently extended with a new feature
supporting tactics built into the theory file, which we would now use here.

Finally, the way we wrote the security properties in this case study differs slightly
from how we presented such formulas elsewhere in this book. Namely, there are
minor differences regarding how one annotates and specifies which parties must be
honest, i.e., not compromised. We now suggest using these alternative formulations.

Overall, this example shows that there are clear benefits to the formal modeling
and analysis of such complex, real-world protocols. Simultaneously, it shows the
interplay between large-scale examples, and research on proof methodology and tool
improvement.

Part V

Advanced Topics

Chapter 13

Observational Equivalence

In this chapter, we describe observational equivalence properties, and the workflows
used to model and analyze them. Until now, all properties considered in this book
were trace properties, meaning they are evaluated over individual traces. In contrast,
observational equivalence describes a hyperproperty that compares two traces. We
often call the workflow for reasoning about observational equivalence the diff mode
of Tamarin as this analysis is enabled using the flag --diff.

Support for reasoning about observational equivalence was added to Tamarin in
2015 [15]. As a result, Tamarin can now be used to analyze privacy-style properties
formalized as observational equivalence, such as anonymity or unlinkability. This has
numerous applications, such as reasoning about voter privacy (sketched in this section)
or reasoning about how persons can be tracked as they roam about with devices
such as RFID tokens or mobile phones. For example, reasoning about observational
equivalence in Tamarin was used to show that the current generation of mobile
communication, the 5G standard, has a weakness whereby users’ cellphones can be
tracked [14]. Tamarin found an attack whereby an active adversary can perform
“presence tests” to track phones as they move over time.

13.1 Observational equivalence in Tamarin

Unlike the properties discussed before, which are defined over a single trace, and
thus called trace properties, observational equivalence is a hyperproperty comparing
sets of traces. Consequently, the approach for analyzing observational equivalence in
Tamarin is to compare two different multiset rewriting systems and see whether the
adversary can distinguish their behaviors.

To start, one enters the two systems as a bi-system, where one single input theory
gives rise to two versions of the system. The systems are identical, except for terms
that are wrapped under the distinguished diff(x,y) operator. This operator takes

217

218 13 Observational Equivalence

two terms as arguments where the first one is used in the so-called left instance of the
bi-system, and the second in the right instance. This means that in the left instance
diff(x,y) is replaced by x, and in the right instance by y. Tamarin then explores
all possible executions on each side, and for each complete trace checks that the
same trace can be mirrored on the other side. This is done using an extra lemma,
automatically added. This essentially ensures that an adversary cannot detect whether
it is interacting with the left or the right instance.

More technically, after creating a theory file using the diff(x,y)-operator one starts
Tamarin with the command-line argument --diff to instruct it to use the mode
for Observational Equivalence. This automatically adds the diff(x,y) operator to
the allowed function symbols, and during loading adds the mentioned extra lemma,
which is given as diffLemma Observational_equivalence in which the proof
step rule-equivalence will be applied first.

In interactive mode, Tamarin presents the user with two versions of the message
theory, multiset rewriting rules, and precomputed sources: one version marked LHS
for the left system, and one version marked RHS for the right system. These show the
two different interpretations, based on the diff-terms.

Note that input files with diff-terms can still contain “normal” lemmas stating trace
properties, on one or on both “sides”. Lemmas can be annotated using left, right,
or both to specify on which side they should be analyzed. By default, if no annotation
is given, the lemma will be considered on both sides. The same holds for restrictions.

Tamarin does separate precomputations for each side in trace mode, and for each
side in equivalence mode, as equivalence mode uses slightly different reduction rules
for normalization and termination. In particular, a new adversary deduction rule
allowing the adversary to test equality between terms is added in equivalence mode.
This ensures that the adversary can compare values whilst applying functions to the
outputs on either side, similarly to static equivalence in the applied Π-calculus [1].
Moreover, a new final proof step, called MIRRORED is now available, that closes an
exploration if it is a (complete) trace that can be mirrored on the other side. In the
case that a trace is complete, but Tamarin is unable to find a mirror, this means
that either there is an attack, or Tamarin was just unable to produce a mirror. It is
up to the user to decide if this missing mirror is an actual attack or if the result is
just inconclusive. This is a major difference to Tamarin’s trace mode: in diff mode,
Tamarin uses a sound, but incomplete, approximation of observational equivalence.
It may thus fail to prove that two equivalent protocols are actually equivalent. In
contrast, in trace mode Tamarin uses no approximation.

13.2 Modeling and analysis workflow 219

13.1.1 A first example

To exemplify a very simple equivalence model and proof, we use an equational theory
representing probabilistic encryption. Here, Tamarin can prove that the two systems
are indistinguishable, with the file available at probEnc.spthy.
theory probEnc
begin

functions: penc/3, pdec/2, pk/1

equations: pdec(penc(m,pk(k),r), k) = m

rule gen:
[Fr(~k)]

--[]->
[!Key(~k), Out(pk(~k))]

rule enc:
[!Key(k), Fr(~r1), Fr(~r2), In(x)]

--[]->
[Out(diff(~r1, penc(x, pk(k), ~r2)))]

end

The use of diff(~r1, penc(x, pk(k), ~r2)) compares a fresh value to the en-
cryption of an adversary-provided message using probabilistic asymmetric encryption
under a public key for which the adversary does not know the private key. Here, under
this equational theory, Tamarin concludes that the adversary cannot distinguish both
sides.

Other examples of successful verifications of equivalence include the RFID protocol
by Feldhofer or a model of the decisional Diffie-Hellman property given Tamarin’s
Diffie-Hellman theory [15]. Observational equivalence has been used to discover
attacks against the TPM-Envelope protocol [15] and 5G-AKA [14].

13.2 Modeling and analysis workflow

When reasoning about observational equivalence, the main difference during modeling
comes in the property specification, which is not done via explicitly user-defined
lemmas as in trace mode. Instead, an automatically created equivalence lemma,
diffLemma Observational_equivalence, is used to compare two systems, and
the placement of the diff-terms defines the property. However, the placement of
the diff-terms can be subtle, both to precisely capture the desired property and to
avoid trivial attacks. In practice, one often needs several iterations before obtaining
the desired model. In Section 13.3, we illustrate this process on a small example.

220 13 Observational Equivalence

When it comes to analyzing the models, the same overall workflows described in
Chapter 11 apply: one needs to debug syntax errors and warnings first, and handle
partial deconstructions. However, there are some important differences.

First, interpreting Tamarin’s results, in particular attacks, differs from trace mode.
We explain this in examples in Section 13.3.

Second, there are differences concerning the handling of termination and performance
issues. Most of the strategies described in Chapter 11 remain valid, but some details
change. For example, fine-tuning heuristics is often less effective for equivalence
properties than for trace properties, as an equivalence proof necessarily computes
(a representative set) of all executions. It is often more effective to fine-tune the
model instead. For instance, in equivalence proofs, Tamarin does not need to resolve
a fact that only contains unconstrained variables (i.e., variables that do not appear
elsewhere, and that are of type message), e.g., In(x) for an unconstrained x, or F(x).
To make use of this, it is sometimes helpful to remove type annotations; this is in
contrast to trace properties, where type annotations are typically helpful for Tamarin.

Third, equivalence proofs tend to be much larger, and typically also grow more rapidly
when the size of the model increases. Longer verification times are thus common.

Finally, restrictions, which tend to be efficient in trace mode, often have the opposite
effect in equivalence mode, creating two possible problems: (i) their use can lead
to spurious attacks, as Tamarin internally uses some approximations, (ii) or their
use can even lead to non-termination as Tamarin continues to explore increasingly
complex executions to determine whether the restrictions hold or not.

13.3 A second example: a voting protocol

As a second example, we show the development of the model and the analysis
of a small, toy, voting protocol. We present this development in six steps where
we iteratively improve both our model and our specification of its desired security
property, after finding attacks on intermediate models.

The goal of this step-by-step guide is to help you understand and interpret different
kinds of attacks in diff mode, as well as the process of specifying a meaningful
equivalence property while avoiding trivial attacks. The full theory files for the
examples given here are available as votingsimpleVx.spthy, where x is the
version number of the following subsections.

The protocol in question is very simple. Each voter encrypts their vote using the voting
server’s public key, and sends the resulting ciphertext to the server, who decrypts
all votes and announces the result. For simplicity, we assume that there are only two
options: ’A’ or ’B’. A security property we would like to verify is the secrecy of the
votes.

13.3 A simple voting protocol 221

13.3.1 Version 1, using deterministic encryption

Our first iteration will use deterministic asymmetric encryption for the voter to
communicate their choice of ’A’ or ’B’ to the voting server (which is not yet
modeled) by encrypting it under the server’s public key. The two scenarios come in
the form of the left instance and the right instance of the modeled bi-system.

This model, available at votingsimpleV1.spthy, uses asymmetric encryption defined as
usual in its deterministic version:
functions: aenc/2, adec/2, pk/1

equations: adec(aenc(m,pk(k)), k) = m

A key for the server is generated by the following rule, where the associated public
key is output to the adversary as well.
rule gen:

[Fr(~k)]
--[]->

[!Key(~k), Out(pk(~k))]

The voter’s choice is made in the next rule with the single diff-term diff(’A’,’B’).
This rule encodes the voter’s choice and is annotated with Secret to be used below
to check for secrecy (as usually done in trace mode). We will explain later why we
use a diff-term here. The output is the asymmetric encryption of the vote under the
server’s public key.
rule voteDiff:

let vote = diff('A','B')
in
[!Key(k)]

--[Secret(vote)]->
[Out(aenc(vote, pk(k)))]

The Secret annotation is then used in a lemma encoding secrecy, as a trace property
as we have introduced it earlier in the book.
lemma secrecy:

"All v #i. Secret(v)@i ==> not Ex #j. K(v)@j"

When analyzing secrecy as defined in the above (standard) lemma, Tamarin immedi-
ately reports violations on both sides of the bi-system. The reason is that both vote
choices, ’A’ and ’B’, are publicly known choices. Hence these values cannot be
secrets, unknown to the adversary. Naturally, in an election, everyone, including an
adversary, knows all possible voting options.

The problem, of course, is that this is not really what we wanted to express. Ideally,
we want to state that the choice made by a certain voter is secret, i.e., that we do not
know whether this voter encrypted ’A’ or ’B’.

Let us try again and reformulate the lemma using observational equivalence and
diff-terms. The diff term placed in the voter’s rule above does exactly this: it

222 13 Observational Equivalence

asks Tamarin to verify whether an adversary can distinguish an instance of the
protocol where the voter chooses ’A’ from an instance where it chooses ’B’.
In Tamarin, this property is materialized using the built-in diffLemma named
Observational_equivalence.

When we try to analyze this simple model, and prove the automatically generated
diffLemma Observational_equivalence, we also get attacks. Intuitively, the
problem is that the adversary can simply also compute the encryption of the two
possible public choices under the server’s public key and compare those ciphertexts
with what the voter sends. As we have a deterministic encryption scheme, the
adversary finds out if it is interacting with the left system or the right system.

Let us look at this issue in more detail. Tamarin produces the attack graph shown in
Figure 13.1, which shows a completed protocol execution. The execution ends with
the adversary iequality rule, which allows the adversary to check whether two
terms are equal. This rule is available only in diff mode, and is used here to compare
the output of the voteDiff rule, with the constant ’A’ encrypted under the server’s
public key created by the adversary. Note that this execution is found in the left-hand
side instance of the bi-system, i.e., the version of the system where the voteDiff
rule chooses ’A’.

To verify observational equivalence, Tamarin checks whether the resulting completed
execution shown above can also be done on the other side (here, the right-hand
side), using the same choices by the adversary (i.e., here the adversary still encrypts
’A’). If so, the proof step MIRRORED would be applied, closing this branch. However,
in this example, it results in a violation because this execution is only possible in
the left instance. When Tamarin attempts to mirror this execution on the right
instance, this yields an impossible execution, as there the value ’B’ is chosen by
the diffVote rule, and thus the equality check at the end fails. This is because it
requires aenc(’A’, pk(~k)) and aenc(’B’, pk(~k)) to be equal, which they
are not as ’A’ and ’B’ are different underneath the encryption.

The above kind of issue is the essence of observational equivalence attacks: given a
successful execution on one of the sides (left or right), it must be possible to have an
execution where the adversary does exactly the same steps on the other side. As this is
not possible here, an attack is reported. This also means that an attack in equivalence
mode is just one graph, which corresponds to an execution that is possible on one
side, but not on the other.

Note that after we find the first attack (using the usual ’autoprove’, with button ’a’),
we can examine all possible attacks by using the ’for all solutions’ (button ’A’) option.
The attacks visible are very similar, once on the left with the adversary using ’A’ as
described above and once on the right using ’B’.

Examining our toy protocol further, an obvious improvement to avoid this attack is to
use non-deterministic asymmetric encryption instead of the deterministic version.
We will make this change in the next version.

13.3 A simple voting protocol 223

#i : iequality

#vk : c_aenc[!KU(aenc('A', pk(~k)))]

!Key(~k)

#vr : voteDiff[Secret('A')]

Out(aenc('A', pk(~k)))

#vk.1 : pub[!KU('A')]

Fr(~k)

#vr.1 : gen

!Key(~k) Out(pk(~k))

#vk.2 : coerce[!KU(pk(~k))]

Fig. 13.1: Observational equivalence violation

13.3.2 Version 2, non-deterministic encryption

The main change here is to use non-deterministic asymmetric encryption, where a
third parameter, representing the random values used during encryption, is added to
the encryption function, and with the modified decryption equation just ignoring that
parameter. The full file is available at votingsimpleV2.spthy. The resulting definition is
as follows.
functions: penc/3, pdec/2, pk/1

equations: pdec(penc(m,pk(k),r), k) = m

The server key generation rule does not change from before. The voteDiff rule has
the necessary minor change to create a fresh random value ~r1 and use it as an extra
argument of encryption.
rule voteDiff:

let vote = diff('A','B')
in
[!Key(k), Fr(~r1)]

--[]->
[Out(penc(vote, pk(k),~r1))]

Running this through Tamarin yields a quick proof of equivalence of the theory.
However, we have not yet modeled the voting server decrypting the votes and
announcing the tally. To do this, we will add another rule that uses the server’s private
key to decrypt the received votes, and outputs the final tally. We then must re-run
Tamarin of course.

224 13 Observational Equivalence

13.3.3 Version 3, adding a tallying authority

We now add the tallying authority, full file available at votingsimpleV3.spthy, modeled
with the following rule.
rule authority:

[!Key(k),
In(<penc(X, pk(k), r1), penc(Y, pk(k),r2)>)]

--[]->
[Out(<X,Y>)]

This rule simply takes two messages encrypted with the election’s public key and
decrypts them, outputting the resulting tally in the clear. This means that the honest
agent’s rule’s output can now be received and decrypted, however note that the
adversary can also create their own encryptions to be passed to this rule.

The resulting theory produces 12 partial deconstructions, see Chapter 8, which we
eliminate using --auto-sources, see Section 8.3 as parameter when loading the
file with Tamarin. The created AUTO_typing_LHS and AUTO_typing_RHS lemmas
can be automatically proven.

As mentioned, the analysis with Tamarin finds many attacks here (using “autoprove
for all solutions” again to see all of them). We pick the attack shown in Figure 13.2
where the vote created by the rule diffVote is given to the tallying authority as
the first, and an adversary-created vote as the second. The output of the tallying
authority then is ’A’ followed by the adversary’s vote on the left-hand side system.
The adversary then checks whether the tally contains an ’A’. This does not have a
mirror in the right-hand side system as the voter’s vote would be ’B’ instead, and
there would be no ’A’ in the tally.

In a nutshell, by adding an arbitrary vote, the adversary obtains the final tally, which
will contain the voter’s vote. This vote depends on the side of the bi-system we are
on, making them distinguishable: the adversary just needs to check whether the result
contains an ’A’ or a ’B’.

To ensure that we always get the same result, we can add another voter which always
votes opposite: it votes ’B’ if the first one votes ’A’, and ’A’ if the first one votes
’B’. One can also see this as the two legitimate voters swapping their votes: this
way the resulting tally will always be one ’A’ and one ’B’ to hide what our voter of
interest is actually doing. However, if the adversary could distinguish both sides, it
can identify which voter voted ’A’ or ’B’, breaking vote secrecy.

13.3.4 Version 4, adding another voter with swap

We now add a second voter who always votes the opposite of our original voter, so
the result is always one ’A’ and one ’B’ in a tally with the two voter’s votes. As the
model now becomes larger we use more let bindings to have an easier overview, and

13.3 A simple voting protocol 225

#i : iequality

#vf : isend

!Key(~k) In(<penc('A', pk(~k), ~r1), penc(Y, pk(~k), r2)>)

#vr : authority

Out(<'A', Y>)

#vk : c_pair[!KU(<penc('A', pk(~k), ~r1), penc(Y, pk(~k), r2)>)]

#vr.1 : d_0_fst

#vk.1 : coerce[!KU(penc('A', pk(~k), ~r1))]

#vl.1 : irecv #vk.2 : c_penc[!KU(penc(Y, pk(~k), r2))]

Fr(~k)

#vr.2 : gen

!Key(~k) Out(pk(~k))

!Key(~k) Fr(~r1)

#vr.3 : voteDiff

Out(penc('A', pk(~k), ~r1))

#vk.4 : coerce[!KU(pk(~k))]

#vk.3 : pub[!KU('A')]

!KU(Y) @ #vk.5 !KU(r2) @ #vk.6

Fig. 13.2: Observational equivalence violation

thus we show some rules again despite just such syntactic changes. This full file is
available at votingsimpleV4.spthy.

We first add new rules giving the existing voter as well as the new voter their respective
long-term keys.
rule genVoterOther:

[Fr(~k)]
--[]->

[!VoterKeyOther(~k), Out(pk(~k))]

rule genVoterDiff:
[Fr(~k)]

--[]->
[!VoterKeyDiff(~k), Out(pk(~k))]

The main change to the model is to add a new rule that encodes the other voter’s
choice, additionally looking up its long-term key.
rule voteOther:
let votecand = diff('B','A')

vote = penc(votecand, pk(authorityk),~r1)
in
[!Key(authorityk), Fr(~r1), !VoterKeyOther(~k)]

--[]->

226 13 Observational Equivalence

#i : iequality

#vf : isend

!Key(~k) In(<penc('A', pk(~k), ~r1), penc('A', pk(~k), ~r1.1)>)

#vr : authority

Out(<'A', 'A'>)

#vk : c_pair[!KU(<penc('A', pk(~k), ~r1), penc('A', pk(~k), ~r1.1)>)]

#vr.1 : d_0_fst

#vk.1 : coerce[!KU(penc('A', pk(~k), ~r1))]

#vl.1 : irecv

#vk.2 : coerce[!KU(penc('A', pk(~k), ~r1.1))]

#vl.2 : irecv

Fr(~k)

#vr.2 : gen

!Key(~k) Out(pk(~k))

!Key(~k) Fr(~r1) !VoterKeyDiff(~k.1)

#vr.3 : voteDiff

Out(penc('A', pk(~k), ~r1))

!Key(~k) Fr(~r1.1) !VoterKeyDiff(~k.2)

#vr.5 : voteDiff

Out(penc('A', pk(~k), ~r1.1))

#vk.3 : pub[!KU('A')]

Fr(~k.1)

#vr.4 : genVoterDiff

!VoterKeyDiff(~k.1) Out(pk(~k.1))

Fr(~k.2)

#vr.6 : genVoterDiff

!VoterKeyDiff(~k.2) Out(pk(~k.2))

Fig. 13.3: Observational equivalence violation

[Out(vote)]

To ease comparison, we repeat here the rule for our voter of interest, extending the let
binding.
rule voteDiff:

let votecand = diff('A','B')
vote = penc(votecand, pk(authorityk),~r1)

in
[!Key(authorityk), Fr(~r1), !VoterKeyDiff(~k)]

--[]->
[Out(vote)]

The key difference between the two rules is that the new voter votes for the opposite
candidate. However, we still find violations of the property, for example the attack
shown in Figure 13.3. The problem here is that despite each voter having their own
key, they make no use of it and the tallying authority does not check anything about
it. Thus, the adversary can just send in one voter’s vote twice, resulting in a pair
of same votes, revealing which side we are on just based on the output. Here we
chose the left-hand side and the voteDiff’s vote and get two ’A’ which cannot be

13.3 A simple voting protocol 227

mirrored, as there will be two ’B’ on the right-hand side of the bi-system. This is not
indistinguishable.

Obviously, to avoid this trivial attack, we must ensure that both votes are tallied. A
way to ensure this is to have each party sign their vote, and for the tallying authority
to check that the received votes are accompanied by appropriate signatures from the
two different parties.

13.3.5 Version 5, adding signatures

Now we add signatures in the two vote-producing rules and a signature check using
pattern matching in the tallying. The vote-producing rules now become the following.
rule voteOther:

let votecand = diff('B','A')
vote = penc(votecand, pk(authorityk),~r1)
votesigned = <vote, sign(vote,~k)>

in
[!Key(authorityk), Fr(~r1), !VoterKeyOther(~k)]

--[]->
[Out(votesigned)]

rule voteDiff:
let votecand = diff('A','B')

vote = penc(votecand, pk(authorityk),~r1)
votesigned = <vote, sign(vote,~k)>

in
[!Key(authorityk), Fr(~r1), !VoterKeyDiff(~k)]

--[]->
[Out(votesigned)]

Here the voters send out the pair of the actual vote and a signature on the vote, with
the full file at votingsimpleV5.spthy.

We change the tallying rule to incorporate signature verification by pattern-matching
on the two keys, and afterwards outputting the result.
rule authority:

let voteA = penc(X, pk(k), r1)
voteAsigned= <voteA, sign(voteA,kA)>
voteB = penc(Y, pk(k), r2)
voteBsigned= <voteB, sign(voteB,kB)>

in
[!VoterKeyOther(kA), !VoterKeyDiff(kB), !Key(k),

In(< voteAsigned , voteBsigned >)]
--[]->

[Out(<X,Y>)]

Here the tallied result is output as an ordered list, where the first vote is output as
the first element of the list. Tamarin finds attacks again. The reason, intuitively, is
that the adversary can put in one chosen voter’s vote as the first one to the tallying
authority, then the first decrypted output is that voter’s vote. An example of such an

228 13 Observational Equivalence

attack is shown in Figure 13.4, where the vote of rule voteDiff is input second to
the tally and compared to ’A’. This fails on the other side as there would be a ’B’.

#i : iequality

PE1 = penc('A', pk(~k), ~r1.1)

PE2 = penc('B', pk(~k), ~r1)

SI1 = sign(PE1, ~k.2)

SI2 = sign(PE2, ~k.1)

#vf : isend

!VoterKeyOther(~k.1) !VoterKeyDiff(~k.2) !Key(~k) In(<<PE2, SI2>, PE1, SI1>)

#vr : authority

Out(<'B', 'A'>)

#vk : c_pair[!KU(<<PE2, SI2>, PE1, SI1>)]

#vr.1 : d_0_fst

#vk.1 : c_pair[!KU(<PE2, SI2>)]

#vl.1 : irecv

#vr.6 : d_0_snd #vr.9 : d_0_fst

#vk.2 : c_pair[!KU(<PE1, SI1>)]

#vl.2 : irecv

#vr.8 : d_0_snd #vr.10 : d_0_fst

Fr(~k.1)

#vr.2 : genVoterOther

!VoterKeyOther(~k.1) Out(pk(~k.1))

!Key(~k) Fr(~r1) !VoterKeyOther(~k.1)

#vr.5 : voteOther

Out(<PE2, SI2>)

#vk.3 : coerce[!KU(SI2)]

Fr(~k.2)

#vr.3 : genVoterDiff

!VoterKeyDiff(~k.2) Out(pk(~k.2))

!Key(~k) Fr(~r1.1) !VoterKeyDiff(~k.2)

#vr.7 : voteDiff

Out(<PE1, SI1>)

#vk.4 : coerce[!KU(SI1)]

Fr(~k)

#vr.4 : gen

!Key(~k) Out(pk(~k))

#vk.5 : coerce[!KU(PE2)] #vk.6 : coerce[!KU(PE1)]

#vk.7 : pub[!KU('B')]

Fig. 13.4: Observational equivalence violation

Essentially, the order still leaks votes in this scenario. In practice, one would obviously
publish the votes in random order to avoid this attack, e.g., using a mix-net. To model
this we can output an associative-commutative multiset instead of an ordered list, so
that the order is concealed. That is exactly what our last model does.

13.3.6 Version 6, order-concealing output

In the final model, available as votingsimpleV6.spthy, we include the built-in multiset
with:
builtins: multiset

The rest of the model is unchanged except for the output of the tallying authority,
which outputs the multiset of the votes rather than the ordered list. For this, we only
show that last line of the rule, and not the whole rule.

13.3 A simple voting protocol 229

[Out(X+Y)]

This version is proven correct by Tamarin. Essentially, we now have a voting system
where the two voters vote opposite, each voter can only submit one vote, and the
outcome is always the multiset of the two candidates ’A’+’B’. However, the adversary
cannot distinguish which choice either of the voters makes. Of course, the model
could be further refined and improved, for example by adding corrupted voters.

13.3.7 Summary

We have presented several versions of our toy voting protocol. Starting from the
initial model, we discovered why we need an equivalence property rather than a
trace property, and also how to specify the “right” scenario to avoid trivial attacks.
We also learned a bit about practical voting protocols. In particular, one should use
non-deterministic (randomized) encryption. Moreover, the tallying authority must
take great care to not leak the order of votes, to not accept repeated votes by just one
voter, and to check each voter’s signature.

Chapter 14

Conditions on user-specified equational theories

In Section 3.1.4, we introduced equational theories and presented some examples of
their use. As a reminder, the notation

equations:
EXPR1 = EXPR2

is used to specify equational theories in models. When defining equations, one may
name function symbols, as desired, but recall that some function names are reserved
for use in built-in theories, as explained in Chapter 7. These functions may not be
user-defined and include: one, exp, mult, inv, DH_neutral, pmult, em, xor, zero,
and Tamarin-internal functions, like mun. For the full list, see Chapter 20.

Due to fundamental theoretical limitations, Tamarin cannot handle arbitrary equa-
tional theories. In this chapter, we explain the conditions that must be met by
equational theories such that Tamarin can reason with them. The conditions go
beyond mere syntactic ones and are nontrivial to check. But for simplicity, we start
with a syntactically defined class of equational theories that Tamarin can handle.

14.1 Subterm-convergent equational theories

We first define the notion of subterm-convergence: An equation is subterm-convergent
when its right-hand side is either a strict subterm of its left-hand side or alternatively
a constant. We call an equational theory subterm-convergent when all of its individual
equations have this property, and the theory itself is convergent. To ensure convergence
(meaning confluence and termination), first confluence must be checked. This means
that there cannot be two different terms that one term can rewrite to. Essentially,
if the left-hand sides of all equations do not overlap (technically this means that
there are no critical pairs between them), confluence is ensured. Then, due to the
subterm-convergent property of all equations, termination is achieved for free, given

231

232 14 User-Specified Equational Theories

confluence. That is, termination is immediately obvious as constants have no further
steps, and there is a decreasing measure whenever the right-hand side is a subterm.

For example, h(f(X),Y,Z) = f(X) is subterm-convergent, whereas
h(f(X),Y,Z) = f(Y) is not. Note that all syntactic built-ins from Section 7.1 are
subterm-convergent, as can be easily verified.

We can now define a class of equational theories that is directly supported by Tamarin.
An equational theory is directly supported when it meets two conditions:

1. it is subterm-convergent, and

2. it is syntactically disjoint from the algorithmic built-ins from Section 7.2. That is,
it may not use any function symbol that is already used by an algorithmic built-in.

At a technical level, such theories are supported by Tamarin because subterm-
convergence guarantees that the conditions in the next section are met. Specifically,
subterm-convergence implies that the theory has the Finite Variant Property (FVP).

Not all equations needed in practice are subterm-convergent. We will next give an
example of an equation used for unblinding blinded signatures. Although it is not
subterm-convergent, it can still be added to Tamarin, as we will show.

14.2 Beyond subterm-convergence

Equational theories that are not subterm-convergent must at least be convergent
(see Section 6.7) and have the finite variant property (FVP), see [36]. Unfortunately,
it is nontrivial for users to check either of these, and Tamarin does not check whether
the equational theories that users give it actually have these properties.

For general theories, checking the FVP requires checking confluence, termination,
and then the FVP. There are tools for checking confluence; however they often leave
a set of critical pairs for the user to check.1 Similarly, there are tools for checking the
termination of rewriting systems. However, integrating them would be difficult, and
termination is undecidable in general. Finally, for checking the FVP, there has been
work on tools for this, but they have not been integrated into Tamarin as the necessary
preconditions of confluence and termination are not checked anyway. Summing up, it
is the modeler’s responsibility to ensure convergence and the FVP by checking both
these properties themself, either by hand or using other tool support, discussed below.

Note that if the equational theory lacks either convergence or the FVP, then Tamarin
will almost surely fail to terminate. Indeed, this may even happen when loading
the theory. Moreover, Tamarin’s correctness proofs rely on these properties; hence
Tamarin’s results are no longer guaranteed to be correct if the equational theory
used is outside of this class.
1 This check cannot be automated, at least without modifying the equational theory, which a
procedure like Knuth-Bendix completion would require.

14.3 Current limitations for equational theories 233

One example beyond subterm-convergence is that of blind signatures, which are a
special kind of signature where a party can choose a value and apply a blinding
function to it to hide the signature’s content. This blinded value is given to a signer
who signs it, without knowing the hidden value. The initial party can then unblind
the signature of the blinded value and receives a signature for the original value.
Although it may not be obvious why someone would sign a value they do not know,
blind signatures are a useful construct. For example, this operation was used in early
electronic cash proposals such as Chaum’s eCash [32].

The following equational theory models blinded signatures, as just described, available
in the file EquationalTheoriesFVPblindsig.spthy.
functions: true/0, pk/1, sign/2, verify/3, blind/2, unblind/2
equations:

verify(sign(m, k), m, pk(k)) = true,
unblind(blind(m,r),r) = m,
unblind(sign(blind(m,r),k),r) = sign(m,k)

This contains the additional blind and unblind functions along with their defining
equations. Note that the equation representing the unblinding of a blinded signature
is not subterm-convergent, as the right-hand side signature sign(m,k) does not
appear on the left-hand side, but only sign(blind(m,r),k) is there. However, as
the equations are convergent and have the finite variant property, Tamarin can handle
them. These equations are used, for example, in some models of voting protocols [57],
as well as the eCash protocol just mentioned.

As mentioned, Tamarin does not provide direct support to check for convergence or
the FVP, but there are other dedicated tools available that can help with these tasks.
To check whether a given theory is convergent, i.e., terminating and confluent, and
has the FVP, one may proceed by checking each of these properties individually.
To check termination, tools such as AProVe [66] and the Maude termination tool
MTT [60] can be used. For confluence, the Maude Church-Rosser checker can be
used [35,61], although this tool may leave the user with some manual work resolving
critical pairs. Finally, after establishing that a theory satisfies convergence, one can
apply methods from [63] to check that it also satisfies the FVP.

14.3 Current limitations for equational theories

In the current version of Tamarin, available at the time of writing (Tamarin 1.10),
there are various equational theories that users may desire for their models, which
cannot be used.

234 14 User-Specified Equational Theories

14.3.1 Theoretical limitations

As equational theories are required to have the finite variant property to work with
Tamarin, this rules out those theories that lack this property. One example of this
is the extension of Diffie-Hellman exponentiation that supports the combination of
addition and multiplication in the exponent. When one adds the expected distributivity
property, there is no representation of the resulting Diffie-Hellman extension that has
the FVP. This also includes more precise models of ElGamal where addition in the
exponent, or similarly multiplication not in the exponent, is needed. These cannot be
represented.

For homomorphic operations (which are used in e-voting protocols for example)
we do not have equational theories that have the FVP and they therefore cannot be
represented. This includes homomorphic encryption and the combination of operators,
such as xor and pairs. Another desirable extension is that of explicit division (used,
for example, in identity-based protocols) or subtraction. These cannot be supported
either, as the resulting equational theories do not have the FVP.

In some cases, when a theory is desired that is, in its full generality, outside of
Tamarin’s scope, one can still work with approximations thereof. For example, for
better approximations of elliptic curves, compared to the built-in Diffie-Hellman
theory, see [47].

14.3.2 Associative-(commutative) operators

It may be interesting to consider equational theories with a new associative-
commutative (AC) symbol, like the + from multiset or * from Diffie-Hellman.
However, users cannot add new symbols with the property of being AC. This is
due to the necessity of normal form conditions and expanded variant computation
that is built-in for the existing such symbols. For function symbols that just require
associativity (A), such theories do not have the FVP and hence users also cannot add
them.

Chapter 15

Advanced modeling of cryptographic primitives

In the symbolic model of cryptography, and in the examples we have seen until now
in this book (notably in Chapter 7), there was exactly one symbolic model for each
type of cryptographic primitive, such as symmetric encryption or signing.

Most of these models originated in the early days of model checking for security
protocols, and have been the de-facto standard for decades. Around 2019, due to
advances in Tamarin’s support for equational reasoning, property specification,
and restrictions, it became feasible to reconsider the precision of these models and
develop more fine-grained symbolic models for primitives such as signatures [74],
Diffie-Hellman [47], Hash functions [33], Authenticated Encryption [31], and Key
Encapsulation Mechanisms [39].

This chapter draws from these research works. We first illustrate the approach on the
example of digital signatures, as developed in [74].

15.1 Digital signature schemes

We first present Tamarin’s default model for digital signatures when using
builtins: signing, which defines the following function symbols and equations.
functions: true/0, pk/1, sign/2, verify/3
equations:

verify(sign(m, k), m, pk(k)) = true

This equational theory specifies four functions.

1. true/0, modeling the constant true,

2. pk/1, modeling a function that, given a private signing key, yields the correspond-
ing public verification key,

3. sign/2, modeling the signing algorithm of the signature scheme, and

235

236 15 Advanced Modeling of Primitives

4. verify/3, modeling the signature verification algorithm.

The theory also specifies an equation that formalizes how these functions interact:
Given a message m and a private signing key k, if we sign m with k, then the verification
of the resulting signature with respect to m and the corresponding public verification
key pk(k) will succeed, represented by true.

Since we have no other equations involving verify, other than the equation just
given, this equation specifies the only way that signature verification can succeed.
There is no other combination of arguments that will be successfully verified. This
implies, among other things:

• a signature can be verified against the exact same message and public verification
key for which it was produced, and

• the signature verification algorithm will fail when given a verification key that
does not correspond to the private signing key.

This is the standard model of a digital signature, which has been widely used in many
symbolic modeling approaches, as it captures the main behavior of generic signature
schemes.

However, it turns out that the above two properties are not implied by standard
cryptographic definitions of signature scheme security, such as EUF-CMA or SUF-
CMA [4,68]. In fact they do not hold for many real-world digital signature schemes
such as DSA, the original version of Ed25519, or several of the submissions to the
NIST process for selecting post-quantum secure signature schemes [44]. Moreover,
as summarized in [74], for many real-world signature schemes, it may be possible to:

1. given a signature, generate a new key pair that can also be used to verify the
signature;

2. given a signature but not its message, produce another signature on the message
for a key pair that was not generated with the honest key generation algorithm but
by an adversary;

3. compute weak key pairs for which a single signature can verify against multiple
messages; or

4. change some bits of a signature without affecting its validity.

In contrast, other signature schemes, such as the libsodium version of Ed25519 or
the post-quantum secure Crystals-Dilithium, satisfy stronger properties that prevent
these behaviors.

As one might expect, these behaviors can impact a protocol’s security. If we implement
a protocol with a signature scheme A that does not allow these behaviors, then the
protocol might meet its security properties. In contrast, if we implement it with a
scheme B that allows for some of these additional behaviors, then there might be an
attack.

15.1 Digital signature schemes 237

In [74] it was shown how we can model several different classes of signature schemes,
capturing their additional, often subtle, behaviors in detail. Two main modeling
approaches are possible. The first focuses on finding attacks on protocols that rely
on the behaviors possible with some (but not all) specific signature schemes. The
second focuses on trying to prove a protocol’s security property by only relying on
the minimal guarantees that all digital signature schemes should offer, corresponding
to EUF-CMA. We describe each of these in the following subsections.

15.1.1 Modeling signature schemes for attack finding

When we consider signature schemes that still meet the standard cryptographic
definition EUF-CMA, the following, perhaps unexpected, behaviors have been
identified in the literature [8, 28, 53, 89, 99, 105]:

1. key substitution attacks,

2. re-signing,

3. colliding signatures, and

4. malleability.

We explain next how to provide more detailed Tamarin models for signature schemes
for each of these classes. These can then be applied to any given Tamarin protocol
model that uses a concrete signature scheme. If an attack is found on a protocol
property, this means that it is unsafe to use a signature scheme that allows for the
additional behaviors modeled.

In Table 15.1 we give an overview of some common digital signature schemes and
their associated Tamarin models, which allow for finding attacks on protocols that
exploit these additional, EUF-CMA conform, behaviors of the signature scheme. We
provide the detailed Tamarin models for each of these behaviors below. For more
information on the advanced properties of these and other digital signature schemes,
including post-quantum secure schemes, see [29, 44, 74].

The first three models below assume that the signatures built-in is already loaded,
i.e., the following line is already present in the specification.

builtins: signing

The fourth model slightly deviates from the interface of the built-in signing, as it uses
an additional argument in the signing function.

Here we only describe the models. Examples of concrete protocols that are vulnerable
to each of these attack classes, and how these models help analyze them, are given
in [74].

238 15 Advanced Modeling of Primitives

Signature scheme Tamarin model

RSA-PKCSv1.5
{
CEO/DEOgen [99], Re-signing [75], Colliding†,Malleability [93]

}
RSA-PSS

{
CEO/DEOgen [99], Re-signing [82], Colliding†,Malleability†

}
DSA

{
CEO/DEOgen [99], Re-signing†, Colliding [110]

}
ECDSA-FreeBP

{
CEO/DEOgen [28], Re-signing†, Colliding [105],Malleability [105]

}
ECDSA-FixedBP

{
Re-signing†, Colliding [105],Malleability [105]

}
Ed25519

{
Colliding [26],Malleability [26]

}
Ed25519-IETF

{
Colliding [26]

}
Table 15.1: Concrete digital signature schemes, and the corresponding Tamarin
models that model them more accurately [74]. For each case where a model is used
and an attack is found, the citation refers to a known algorithm to compute the
corresponding keys. In some cases (marked with †) no citation is given because there
is no known algorithm to compute the corresponding keys; however the absence
of the corresponding behavior is unproven, and hence it is prudent to assume it is
possible and model the behavior.

15.1.1.1 Key/message substitution attacks

For most signature schemes, there is no explicit key or message binding. Namely,
for any given signature, there may be more than one verification key and/or message
that it can be successfully verified against. This type of behavior, or its absence, is
known in the literature under various names, including Digital Signature with Key
Selection (DSKS) and Exclusive Ownership. Here we use the exclusive ownership
terminology, for which there exist two main variants: constructive (CEO) and
destructive ownership (DEO). For signature schemes that allow these behaviors, we
add the following functions, equations, and rule to the specification.

functions: CEOgen/1
equations:

verify(sign(m, sk), m, pk(CEOgen(sign(m, sk)))) = true

functions: DEOgen/2 [private]
equations:

verify(sign(m1, sk), m2, pk(DEOgen(m2,sign(m1, sk)))) = true

rule make_DEO_sk:
[In(m2,sign(m1,sk))]
--[_restrict(not(m1=m2))]->
[Out(DEOgen(m2,sign(m1,sk)))]

The CEOgen function represents an algorithm that can generate new private keys (or
key pairs) that can also be used to verify a given signature. Similarly, the DEOgen
function represents an algorithm that can generate new private keys (or key pairs) that
can be used to verify a given signature with respect to a different message. We cannot
directly model the fact that this must be a different message at the equational theory
level as Tamarin does not support conditional equations. Hence, we make DEOgen a

15.1 Digital signature schemes 239

private function, and only give the adversary access to this function through a rule
make_DEO_sk. For rules, we can enforce that the message is different by adding an
embedded restriction.

As a concrete protocol example, the MAC-based variant of the Station-to-Station
(STS) protocol, which was proposed in [52], can be proven correct under the
strongest signature scheme model. However, if we enable the CEOgen rule, Tamarin
automatically finds the attack that was found by manual inspection in [28].

15.1.1.2 Re-signing

Intuitively, one might expect that if someone can produce a signature on a message m
with their signing key sk, they must know m. In practice, this is not the case for most
common signature schemes. The underlying reason is that most signature schemes,
as a first step, hash the message m to produce h(m), and subsequently use this hash
in the signing function. If the signature reveals h(m), then the adversary can simply
repeat the subsequent signing steps with its own signing key sk, producing a valid
signature on m without actually knowing m.

For signature schemes where this is possible, we can simply add a rule that allows
the adversary to “re-sign”. Concretely, given a signature sign(m,sk1), but not the
message m, the following rule allows the adversary to use any signing key sk2 that it
knows to produce another signature on m.

rule: ReSign
[In(sign(m,sk1), sk2)] -->
[Out(sign(m,sk2))]

Given a concrete signature scheme, we can use Table 15.1 to determine whether to
include the above rule in the protocol model.

15.1.1.3 Colliding signatures

Intuitively, one might expect for a given signature and public key that there exists at
most one message for which the signature verifies. However, this is not the case for all
schemes: for several schemes, it is possible for the adversary to produce a signature
and public key that verify two messages of its choice. This was first shown in [105]
for ECDSA. Similar behavior is possible for the original version of Ed25519 [26,29],
where for some signatures and public keys, verification passes for any message with
high probability.

We model the worst case behavior, in which there are key pairs whose signatures
verify with any message. We define an abstract function weak that models the signing
keys of these pairs. We add an equation that models that signatures produced by this
signing key for any message m1 can also be verified by the corresponding public key
for any other message m2.

240 15 Advanced Modeling of Primitives

functions: weak/1
equations: verify(sign(m1,weak(x)),m2,pk(weak(x))) = true

15.1.1.4 Malleability

Finally, one natural distinguishing property between different provably secure sig-
nature schemes is malleability: if a signature successfully verifies, can we be sure
that it was not changed? The basic cryptographic security definition for signatures,
EUF-CMA, does not preclude that a signature can be modified and still verify
successfully. Many standard signature schemes, including ECDSA and EdDSA, are
malleable and allow such modifications.

We thus would like to model that given a signature, an adversary can produce a
second signature that also verifies for the same message and public key. However, in
our previous models, we used the built-in signature definition, in which signing had
two arguments, and thus for any given message and signing key there was exactly
one signature. In order to express that there can be multiple signatures for a given
message and signing key, we must add an additional argument to the signing function
that abstractly models the difference.

functions: verify/3, sign/3, pk/1, true/0
equations: verify(sign(m, r, sk), m, pk(sk)) = true

In practice, when signing messages in a protocol, we can instantiate the second
argument r with any value, e.g., a constant, because verification ignores r and we
only consider the fact that it is possible to produce a different signature for the same
message and signing key. We can model this by an explicit mangle function.

functions: mangle/2
equations: mangle(sign(m,r,sk),repnew) = sign(m,repnew,sk)

This model gives the adversary the ability to modify signatures that continue to verify
with the same message and key.

15.1.2 Modeling signature schemes for proving security

In the detailed signature models just presented, we focused on modeling specific
additional behaviors, which is useful for finding attacks on protocols. However, we
are usually more interested in proving that a protocol meets its properties, i.e., by
relying on the properties of its underlying building blocks, such as a signature scheme,
the protocol satisfies its properties.

As mentioned previously, the minimal security property that all provably secure
signature schemes must meet is called EUF-CMA: Existential Unforgeability under
Chosen Message Attacks. Informally stated, this property requires that for all
verification keys produced by the scheme’s key generation algorithm, the adversary

15.1 Digital signature schemes 241

cannot (with non-negligible probability) forge a signature that verifies using that key
unless it knows the corresponding signing key. Additionally, to be useful, we require
signature schemes to be correct: given a key pair produced by the key generation
algorithm, if a signature was produced by the signing algorithm for the signing key, it
should also verify with the pair’s verification key. Note that correctness is not actually
formally required by EUF-CMA.

We make two observations about the combination of EUF-CMA and correctness. First,
these definitions do not guarantee any unique binding: given a signature, we cannot
be sure that it can only be verified with respect to one message or one verification key.
Second, the definitions do not specify what the result of the verification algorithm
should be when given a verification key that was not produced by the key generation
algorithm. In reality, the verifier typically cannot tell how verification keys were
produced, and the verifier may be invoked with verification keys produced by an
adversary. Thus, if we only know that a signature scheme is proven to be EUF-CMA
and correct, we do not know what its verify algorithm will output for maliciously
produced verification keys. So verify is underspecified.

In order to prove the security of a protocol that uses an EUF-CMA secure signature
scheme, we would therefore like to model this underspecified verification function.
In the modeling of the primitives we have seen so far, we have been using function
symbols and equational theories to model, e.g., the verification function. In such
models, the equational theories fully determine the binding properties and function
outputs. These are therefore not suitable for modeling underspecified functions.

Modeling underspecified functions

Fortunately, we can model underspecified functions by taking another approach.
Instead of using a function symbol in the term algebra and specifying additional
relations through equational theories, we can instead use unrelated variables, and
define their relationship using restrictions (see also Section 5.10.2 for details on
restrictions). For example, consider the following model that produces traces with A
and B facts.
theory UnderspecifiedExample begin

functions: h/1

rule HashPublic_Explicit:
[In($X)]

--[A(h($X))]->
[]

rule HashPublic_Restriction:
[In($X), In(Y)]

--[B(Y), _restrict(Y = h($X))]->
[]

lemma ExplicitOnlyHashes:

242 15 Advanced Modeling of Primitives

"All Y #i. A(Y)@i ==> Ex X. Y=h(X)"

lemma RestrictionOnlyHashes:
"All Y #i. B(Y)@i ==> Ex X. Y=h(X)"

end

When either of the facts A or B occurs in a trace, its argument is the hash of a term.
This is stated by the two lemmas, both of which are easily proved. The full file
is available at UnderspecifiedExample.spthy. In the case of A, this holds because of
the explicit constructor in the rule. In contrast, if we ignore the restriction in the
second rule, B’s argument could be any term that the adversary can produce. The
purpose of the restriction in the rule HashPublic_Restriction is to bind $X and
Y in such a way that in all traces that meet the restriction, $X acts as the “input” of an
abstract function, and Y acts as the “output”. In this sense, the model underspecifies
the intended behavior before the restriction is applied, and we use the restriction to
narrow the set of traces down to the desired one.

We can use this general approach to underspecify functions. For example, we can use
restrictions to specify outputs for a subset of the domain, and leave the other outputs
underspecified. This is exactly the approach we take to model an accurate signature
verification function based on only its proven EUF-CMA guarantees. When verifying
using an honestly-generated verification key, we will use the restriction to ensure it
produces the expected output. In contrast, when verifying a signature using a key
that was not honestly generated (e.g., because the adversary generated it) we will not
specify whether signature verification returns true or false. However, in all cases,
we will require that verification is deterministic, i.e., verify always returns the same
result for the same inputs.

Concretely, this means that in Tamarin models we will not use an abstract signature
verification function, but will instead use actions and restrictions to model an
underspecified verification function. In particular, we will introduce a Verified
action that has four main arguments: the signature, the message we are verifying
the signature against, the public key we are verifying the signature with, and the
result of the verification algorithm (true or false). The full file is available
at acme-02-SVS.spthy.

There is one technicality that we must solve: to formulate our restrictions, we must
refer to the original message m and the public key pk(k) of the key used to produce
the signature sign(m,r,k). A natural way to solve this would be to use pattern
matching in the restrictions. Unfortunately, this approach does not work here because,
as we will see later, the sign function will be reducible to model malleability. This
implies that sign cannot directly occur in property specifications or restrictions, as
explained in Section 5.1. We thus move extraction to the actions of the rules, with the
help of two auxiliary functions e1 and e3 that extract the first (message) and third
(signing key) argument from a signature, respectively.

functions: e1/1 [private]
functions: e3/1 [private]

15.1 Digital signature schemes 243

equations: e1(sign(x,y,z)) = x
equations: e3(sign(x,y,z)) = z

Note that we mark these functions as private. Recall from Section 3.1.2 that they
cannot be used by the adversary, and we do not use them in the protocol, but they are
only used to formulate the restrictions.

The final Verified(sig,sigm,sigpk,verm,verpk,result) action has six pa-
rameters: the first three sig, sigm, and sigpk correspond to the signature and the
message and the public key it was intended to be verified with, verm and verpk
denote the message and the public key we are verifying against, and result denotes
the outcome.

In each rule in which a signature must be verified, we then annotate this with the
following action.

Verified(sig,e1(sig),pk(e3(sig)),verm,verpk,true)

The second and third arguments here perform the intended extraction from the
signature, which works around the technical limitations on the restrictions.

As mentioned before, EUF-CMA only considers guarantees for honestly generated
public keys, whereas parties that verify signatures may not know how the public keys
they use were generated. To model this distinction, we modify the PKI rules that
we previously saw in Section 5.5 to include an Honest action that marks honestly
generated keys.
rule Register_pk:

[Fr(~ltk)]
--[Honest(pk(~ltk))]->
[!Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk))]

We can now add our restrictions that are direct representations of the correctness
and EUF-CMA security guarantees for signature schemes. We take these restrictions
directly from [74].

Correctness: This requirement follows directly from the requirement that an hon-
estly generated public key, an honestly generated signature, and the correct message
must verify as true.
Correctness:

All sig, m, pk, t1, t2.
Honest(pk)@t1 &
Verified (sig, m, pk, m, pk, false)@t2

==> false

NoForgery: Here we state that if a signature verification does succeed against an
honest public key, then the signature must have been honestly produced.
NoForgery:

All sig, sigm, sigpk, verm, verpk, t1, t2.
Honest(verpk)@t1 &
Verified (sig, sigm, sigpk, verm, verpk, true)@t2

==> sigm = verm & sigpk = verpk

244 15 Advanced Modeling of Primitives

Consistency: We require that the verification procedure is a deterministic function.
Namely, we specify that repeated calls to verify will always return a consistent
answer.
Consistency :

All sig, sigm, sigpk, verm, verpk, result1, result2, t1, t2.
Verified(sig, sigm, sigpk, verm, verpk, result1)@t1 &
Verified(sig, sigm, sigpk, verm, verpk, result2)@t2

==> result1 = result2

The preceding model now allows arbitrary verification behavior as long as the
requirements for EUF-CMA are met. This allows for all key/message substitution
attacks as well as colliding signatures. However, it does not cover malleability or re-
signing, which are orthogonal aspects because they rely on the possibility of producing
different signatures from existing ones, rather than unexpected verification behavior.
Thus, for the full verification model, we additionally include the function symbols
and equations for the malleability (Section 15.1.1.4) and re-signing (Section 15.1.1.2)
behaviors.

Note that subsequent research in the computational setting, such as [29, 44], has
formalized stronger computational properties for signature schemes. These can be
used to formally prove the absence of the behaviors from Section 15.1.1 for a given
signature scheme.

15.2 Advanced models of other cryptographic primitives

In this section, we briefly highlight some other cryptographic primitives for which
more detailed symbolic primitives than the usual symbolic ones exist. We do not
provide all details, but just the high-level ideas, and we refer the reader to the
individual papers for the full modeling details.

15.2.1 Diffie-Hellman primitives, elliptic curves, and non-prime order
groups

Diffie-Hellman exponentiation and its elliptic-curve counterpart are common building
blocks of many security protocols, and involve operations on elements of a group of
prime order. In computational analyses and proofs of such protocols, it is common
to assume that all received values (for example, a Diffie-Hellman public key) are
elements of the prime order group. We described the basic Diffie-Hellman built-in
that captures such a model in Section 7.2.3.

However, in actual protocol implementations, such group elements are encoded in
bitstrings, and not all received bitstrings may decode to a group element. In theory,
the solution is simple: when receiving a bitstring, the recipient should check that

15.2 Other primitives 245

this corresponds to a group element, and reject the bitstring otherwise. Depending
on the concrete group, such checks can require modular exponentiation, which is
considered costly by implementers, and the benefit of performing these checks is not
always clear to them. Because of this, many protocol implementations do not perform
such checks, which allows adversaries to insert non-group elements. Any attacks that
would result from such insertions are not covered by a basic Diffie-Hellman model or
computational analyses that assume all values are group elements.

In [47], Cremers and Jackson explored the impact of different group encodings
and embeddings on protocol security, and how to model these in Tamarin. This
leads to a range of different models depending on the specific properties of the
Diffie-Hellman embedding or the properties of the actual elliptic curve that is used in
an implementation.

The underlying technical idea is to represent elements of complex groups as triplets of
the form (𝑡, ℎ, 𝑔𝑦). Here, 𝑡 identifies the specific group to cater for models that involve
operations on multiple distinct groups. Next, ℎ and 𝑔𝑦 represent the decomposition
of a group element into the (non-prime order) cogroup element ℎ and prime order
subgroup element 𝑔𝑦 . We introduce a constant 𝑔𝑖𝑑 for which we have that 𝑔𝑖𝑑𝑥 = 𝑔𝑖𝑑
for all 𝑥. Given a group identifier 𝑡, this allows one to express the identity element as
(𝑡, 𝑔𝑖𝑑, 𝑔𝑖𝑑), regular prime order group elements as (𝑡, 𝑔𝑖𝑑, 𝑔𝑥), cogroup elements
as (𝑡, ℎ, 𝑔𝑖𝑑), and other supergroup elements as (𝑡, ℎ, 𝑔𝑥).

The full modeling details are given in [47]. To give a rough idea though, we show
one aspect of the more advanced model. The previously mentioned triplets are
encapsulated in an abstract function ele. Then, depending on the group details,
we add different annotations and restrictions to the model. For example, to model
nearly-prime order groups, each time a rule uses an exponentiation of an element to
the power of y, we annotate the rule with an action fact Raised as follows.

rule Operate:
[In(ele(t,oldh,n), State(y), In(newh))]
--[Raised(t,oldh,newh,y)]->
[Out(ele(t,newh,n^y))]

In the Operate rule, the adversary can determine – by providing newh – what the
outcome of the exponentiation is in the cogroup dimension. We use this to model
all possible behaviors for the cogroup, and effectively allow the adversary to choose
the cogroup details. However, the cogroup details do not change midway during an
execution. To capture this, we add a consistency restriction that captures that whatever
the adversary chooses, will have to be consistent within the trace.

restriction Consistency:
"∀ t s r1 r2 y #i #j .

Raised(t,s,r1,y)@i & Raised(t,s,r2,y)@j ==> r1 =r2"

Furthermore, for elements of the prime order subgroup (which are identified by the
gid in the cogroup position of ele), the adversary cannot choose the result of the
exponentiation to be outside of the prime order subgroup. We add a restriction to

246 15 Advanced Modeling of Primitives

ensure that all exponentiations within the prime order subgroup result in elements of
that subgroup.
restriction Identity :

"∀ t newh y #i .
Raised(t, gid, newh, y)@i ==> newh = gid"

For full details, see [47]. Using such more detailed models for specific group or curve
choices enables Tamarin to analyze a wider class of attacks for the protocol.

15.2.2 Hash functions

Hash functions are a core building block of security protocols. In the symbolic setting,
as we have seen so far, hash functions are simply function symbols without any
additional properties or equations specified. By default, this basic model means that the
functions are considered to be collision-resistant (h(x)=h(y) ==> x=y), preimage-
resistant (one cannot learn x from h(x), sometimes also called non-invertible), and
the only way to construct h(x) is by knowing x and applying h.

The basic symbolic model is very similar to the computational definition of a so-called
Random Oracle, also known as the ROM (Random Oracle Model) [25]. Informally,
in the ROM, hash functions are modeled as oracles that given an input x produce a
random output y, and when queried again with the same x return the same y. Thus,
in this model, there is no connection between the input and output, except that the
oracle behaves deterministically. In the majority of computational protocol proofs,
hash functions are modeled as random oracles.

However, many deployed hash functions allow for more behaviors than either of these
two idealized models. There are two main types of discrepancies. First, the idealized
models assume that the only way to construct h(x) is by knowing x and applying
h. However, this is not true for common hash functions, such as most versions of
SHA-2, which are based on the Merkle-Damgård construction [90]. For example, in
SHA-2, the input is split into fixed-size blocks, and (ignoring padding) h(b1,b2)
is internally computed as h(h(b1),b2). This means that an adversary who knows
h(b1) and b2, but not b1, can still compute h(b1,b2)1. This behavior is also known
as a length-extension attack, as the adversary can extend a hash, for which it does
not know the input, to produce a hash of any extension of this input. While length
extension attacks are possible for many hash functions, they are neither possible in
the basic symbolic model nor in the Random Oracle Model.

The second discrepancy is due to the way in which hash functions are commonly
broken in practice: it is not the case that a hash function is considered either
“completely secure” or “entirely broken.” Rather, hash functions might still be pre-
image resistant even if they are no longer considered collision-resistant. For example,
SHA-1 is currently still considered to be pre-image resistant, but not collision resistant.

1 In practice, this is complicated by the concrete padding scheme used, but we omit the details here.

15.2 Other primitives 247

Furthermore, if a hash function is no longer considered collision resistant, there
are subtle variants of the attacks that may be possible depending on the concrete
hash function. For example, for some hash functions, one might be able to construct
a chosen-prefix collision, but not a chosen-suffix collision. Whether such a hash
function is then still suitable for use in a protocol, depends on the protocol details.

In [33], the authors systematically analyze these discrepancies and create a family
of symbolic models that can accurately capture various concrete hash functions or
the properties that were proven for them. This leads to a hierarchy of hash function
models, where the basic symbolic model is the strongest (most idealized) version.
This allows them to analyze a range of protocols with Tamarin and automatically
discover known and new attacks, including the classical length-extension attack on
the Flickr authentication protocol.

For example, one can model length-extension attacks by providing a rule of the
following form, using pattern matching.
rule length-extension:

[In(h(b1)), In(b2)]
-->
[Out(h(<b1,b2>))]

If the adversary knows any hash value of the form h(b1) (even when it does not
know b1), it can use this rule to create the hash of b1,b2.

We refer the reader to [33] for full details on the family of hash function models.

15.2.3 Authenticated Encryption with Associated Data

Real-world symmetric encryption schemes, such as AES, protect against an adversary
trying to learn the message that was encrypted. However, they do not provide
authentication: if we provide a random string to the AES decryption algorithm instead
of a real ciphertext, it will not fail, but instead produce a (random looking) output. If
we additionally want authentication, we could add a Message Authentication Code
(MAC).

In many real-world scenarios, we often want both secrecy and authentication. For this
purpose, a dedicated cryptographic definition exists, called Authenticated Encryption
with Associated Data (AEAD). At its core, it provides secrecy and authentication for
its input. Additionally, it may include “associated data” which is data that will also be
authenticated, but not kept secret. For example, the associated data part may be used
to identify a particular session at a recipient, such that the recipient can determine
the right session and decryption key to use before starting decryption. In practice,
modern protocols often do not use symmetric encryption primitives, but instead use
AEAD constructions.

248 15 Advanced Modeling of Primitives

In [31], the authors explore the complex space of computational definitions for AEAD
schemes. There are surprisingly many different computational security definitions for
AEADs, which arise from the various key-binding and message-binding possibilities.
Additionally, AEADs typically need some unique input per invocation (such as a
nonce or a counter), which might be re-used in practical applications due to, e.g.,
memory or session resets, and fine-grained computational security definitions have
been proposed to cover all these possibilities. [31] systematically explores these to
arrive at a family of symbolic Tamarin models for AEAD functions. Thus, given
a protocol with a specific AEAD function, the modeler can pick the best symbolic
model, and use this to get accurate analysis results.

In this case, the underlying idea is to extend the syntax from symmetric encryption
(where enc has arity 2) to a more fine-grained model. We write enc(k,n,h,m)
to represent the authenticated encryption of the message m with key k, where n
is the explicit nonce (randomness) used in the encryption, and h is the (optional)
auxiliary data that is only authenticated, but not encrypted. We can then model a new
decryption function, as well as an extraction function for the associated data h that
does not require knowledge of the key k.

Once this additional information is in place, we can then model the properties or
weaknesses of different real-world AEADs by adding specific rules, equations, or
function symbols. For example, to model an AEAD that is vulnerable to so-called
nonce-reuse attacks, we add the following rule.

rule nonce_reuse:
[In(enc(k,n,h1,m1)),

In(enc(k,n,h2,m2))]
--[_restrict(not(h1=h2 & m1=m2))]->

[Out(k)]

This rule models that if the adversary observes two ciphertexts that were the result of
encrypting two different h,m pairs with the same nonce n and key k, then this leaks
information about the key k. In our symbolic setting, we model the consequence of
this information leakage as the adversary learning the key k.

For full details we refer the reader to [31].

Chapter 16

Reducing Proof-Construction Time

In this chapter, we describe the options available when verification fails to terminate,
or simply takes longer than desired. In particular, we present different ways that
the modeler can influence Tamarin’s reasoning heuristics to improve Tamarin’s
efficiency and reduce the time it needs to construct proofs. Chapter 11 explains the
overall workflows and provides some hints on which option is appropriate for which
case.

During each analysis step, Tamarin applies one of its proof rules, for example to
refine a dependency graph or introduce case distinctions. In most cases, multiple rules
are applicable and the rule chosen can make a difference in how quickly Tamarin
finds a proof, or whether it even finds a proof at all. Tamarin uses heuristics to
select among the applicable rules, as discussed in Section 6.4. While Tamarin offers
several built-in general-purpose heuristics (Section 6.6), users may wish to modify
these heuristics based on the specifics of their model or even the current proof state.
There are several ways to do this, which we consider next.

16.1 Changing priorities of facts using label prefixes

The easiest way to modify the order in which Tamarin resolves certain facts is
through their naming: one can change priorities by having their names start with L_
or F_. Facts starting with F_ are prioritized over others, i.e., solved first, whereas
those prefixed by L_ are deprioritized, i.e., solved last, after all other facts. These
prefixes do not change the ordering of these facts with respect to non-fact constraints.

For example, consider the case where we have an initiator process modeled by three
rules I1, I2, and I3, which hand over state information using State_I1 (between
I1 and I2) and State_I2 (between I2 and I3). Suppose that Tamarin reaches a
proof state where it has both an open constraint State_I2 from an I3 rule instance,

249

250 16 Reducing Proof-Construction Time

and some other constraint fact, say State_R2, from a responder process. In this case,
the heuristics will determine which of these constraints will be solved first.

We can prioritize solving the initiator’s preceding step by renaming the State_I2
facts in the file by F_State_I2. If Tamarin now needs to choose between solving
these facts, F_State_I2 will be prioritized over State_R2. Deprioritization proceeds
analogously.

Essentially, this overrides locally the order in which state fact sources are explored
by the heuristic. By exploring first the sources of a specific fact leading to, say, an
initial key generation, often helps Tamarin learn more about the overall system state.
For example, exploring the previous state may yield information about whether keys
were honestly generated, or not. This may lead to a direct contradiction to a property
being proven, and thus closes a branch of the proof. Analogously, the L_ can be used
to avoid, as much as possible, exploring the sources of other facts, for example, when
this would cause large case distinctions.

Note that the prefix is considered to be part of the fact’s name: F_State() and
State() are two different facts and cannot be unified. Therefore, one must globally
rename the fact in the model. Thus, when using this approach, one cannot control
priorities in a fine-grained fashion. For example, one cannot prioritize a fact only
in the premise of some of the rules that use this fact. The next section presents an
approach that allows for more fine-grained control.

16.2 Changing priorities using + and - modifiers

The previous mechanism uses L_ and F_ to change the priorities of some facts across
an entire model, namely, in each rule where the fact occurs. In some cases, we would
like more fine-grained control, for example, to change the priorities of facts just
within the context of some particular rules.

The modifier + (respectively -) modifies a fact in a rule to be prioritized (respectively
to be delayed after all other facts) when this fact arises as a constraint from an instance
of this specific rule. The annotation is given in square brackets after the fact name,
when used within a given rule. For example, the fact T(x) has the normal priority,
T(x)[+] would be solved with high priority, and T(x)[-] would be deprioritized.

This annotation can not only be used for state facts, but also for action facts when they
appear in rules. Additionally, action facts in lemmas can be annotated, which then
applies to all actions created from these lemmas in the exploration of a proof attempt.

Note that unlike the L_ and F_ prefixes, the minus and plus annotations are not part
of the fact name. Hence facts with this annotation can be unified with other facts with
the same name without annotations.

16.3 Tactics 251

16.3 Tactics

Tactics are useful when one requires even more control over Tamarin’s heuristics.
Compared to fact label prefixes and annotations just described, they have two main
benefits. First, they offer far more flexibility to prioritize or de-prioritize proof
methods that satisfy simple logical expressions built from pattern matching and fact
name matching. Second, whereas the previous approaches affected the heuristics for
all lemmas in the theory, users can specify which tactic should be applied on a lemma
by lemma basis.

Intuitively, tactics work as follows. Users first specify from which base heuristic’s
order they want to start, by selecting one of Tamarin’s existing heuristics. They then
use a tactic’s predicates to modify the base order by specifying which proof methods
should be prioritized or de-prioritized.

A Tamarin theory can contain multiple tactics. Each tactic has a user-defined name,
an optional pre-sorting heuristic, followed by a list of (de)priorization tactic formulas.
The concrete syntax for these is the following:

• A tactic starts with the keyword tactic: followed by the tactic’s name.

• This is optionally followed by the keyword presort: with an argument specifying
one of the built-in heuristics, like s, c, i, etc., as defined in Section 6.6. This
heuristic will be used to pre-sort proof methods before the tactic’s prioritization
is applied. By default, if no presort is specified, Tamarin uses the s (“smart”)
heuristics to pre-sort the applicable proof methods.

• Zero or more prio: specifications, followed by zero or more deprio: specifica-
tions, and at least one of either of these must be given. Each prio: and deprio:
specification is optionally followed by a {smallest} post-sorting indicator, and
must include a tactic formula that selects proof methods to be prioritized or
deprioritized. Tactic formulas are built from tactic predicates and the logical
operators | (“or”), & (“and”), and not, with their standard interpretation.

There are two main tactic predicates that can be used in tactic formulas:

• isFactName: This predicate takes a string argument, which is interpreted as a
fact name. The predicate holds if the proof method is a premise fact or an action
fact whose name is equal to the argument.

• regex: This predicate takes a string argument, which is interpreted as a regular
expression, using the Haskell PCRE (Perl Compatible Regular Expressions) syntax.
The argument is matched against the string representation of the proof method.1
The predicate holds if there is a match.

Tamarin uses tactics to prioritize the proof methods its tries. Given a tactic, the
proof methods that satisfy the first prio formula are given the highest priority, and

1 The string representation of a proof method is visible in the GUI as well as the proof output, which
can help to specify the correct regular expressions.

252 16 Reducing Proof-Construction Time

the proof methods that satisfy the last deprio formula are given the lowest priority.
If multiple proof methods satisfy a formula, the original prioritization order between
them is maintained, unless the {smallest} indicator is specified, in which case they
are sorted by increasing length of their string representation. Proof methods that do
not satisfy any of these formulas are left in their current order. Thus, after applying
the tactic, the proof methods are reordered: first, the proof methods that satisfy the
prio formulas, then proof methods that do not satisfy any formula in their original
order, and then the proof methods that satisfy the deprio formulas.

The following snippet illustrates the syntax.
tactic: nameOfTactic
presort: heu
prio:

PrioFormula1
prio:

...
prio {smallest}:

PrioFormulaN
deprio:

DeprioFormula1
deprio:

...
deprio:

DeprioFormulaM

This tactic results in the following behavior:

1. All applicable proof methods are first sorted using the heuristic heu.

2. The applicable proof methods are returned in the following order:

a. All applicable proof methods for which PrioFormula1 holds.

b. . . .

c. All applicable proof methods for which PrioFormulaN holds, sorted by
increasing length of their string representation.

d. All applicable proof methods for which none of the prio or deprio formulas
hold.

e. All applicable proof methods for which DeprioFormula1 holds.

f. . . .

g. All applicable proof methods for which DePrioFormulaM holds.

In the graphical user interface mode, all tactics contained in the current theory can
also be inspected using the Tactic(s) link in the left-pane menu.

Tactics can be used like any other heuristic by specifying the tactic’s name between
braces, e.g., {nameOfTactic}. In practice, this can be used in three main ways.

First, when using Tamarin on the command line, we can specify:

16.3 Tactics 253

tamarin-prover --heuristic={nameOfTactic} file.spthy

Second, we can specify a heuristic at the start of the theory, using:
heuristic: {nameOfTactic}

The previous two approaches apply to all lemmas in a theory. The third approach
allows one to specify a different heuristic or tactic on a per-lemma basis. For example:
lemma test [heuristic={nameOfTactic}]: ...

By specifying multiple tactics within a single theory, we may use a different tactic for
each lemma.

An example tactic

As a concrete example, we present a model for which the default smart heuristic
fails to terminate, the consecutive heuristic C terminates in 162 steps, and our oracle
terminates in just 10 steps. Our example is intentionally artificial and just for illustrative
purposes. The input theory, available in full at SourceOfUniquenessTactic.spthy, starts
with
theory SourceOfUniqueness begin

heuristic: {uniqueness}

where the included heuristic option {uniqueness} selects the tactic uniqueness,
which is specified later in the theory, as the default heuristic for the theory. The rest
of the theory includes the built-in symmetric encryption, and contains three rules.
The first two rules each generate an encrypted term, and the third rule receives these
terms. We intentionally add some complexity to this example by adding a restriction
that forces multiple extra rule instances, and an ordering on action facts.
builtins: symmetric-encryption

rule generatecomplicated:
[In(x), Fr(~key)]
--[Complicated(x)]->
[Out(senc(x,~key)), ReceiverKeyComplicated(~key)]

rule generatesimple:
[Fr(~xsimple), Fr(~key)]
--[SimpleUnique(~xsimple)]->
[Out(senc(~xsimple,~key)), ReceiverKeySimple(~key)]

rule receive:
[ReceiverKeyComplicated(keycomplicated)
, In(senc(xcomplicated,keycomplicated))
, ReceiverKeySimple(keysimple)
, In(senc(xsimple,keysimple))
]
--[Unique(<xcomplicated,xsimple>)]->
[]

254 16 Reducing Proof-Construction Time

// this restriction artificially complicates all occurrences of Complicated(x)
restriction complicate:
"All x #i. Complicated(x)@i

==> (Ex y #j. Complicated(y)@j & #j < #i)
| (Ex y #j. SimpleUnique(y)@j & #j < #i)"

lemma uniqueness:
"All #i #j x. Unique(x)@i & Unique(x)@j ==> #i=#j"

Observe that, in this example, the xsimple argument of the receive rule is
unique because every key in a (linear) ReceiverKeySimple fact is fresh and
uniquely identifies a correspond encryption with a fresh xsimple. Thus, the lemma
uniqueness intuitively holds: xsimple is a fresh value that is encrypted and can
only be used once as the key required is fresh, and in a linear state fact.

Proving this lemma is difficult for Tamarin and the default smart heuristic fails since
it explores an ever-growing state. The consecutive heuristic C succeeds in 162 steps. In
contrast, our tactic succeeds in 10 steps. Our tactic solves the ReceiverKeySimple
state facts first, followed by solving encryptions of the form senc(xsimple) and
senc(~xsimple), and lastly it solves KU(~key), before just using the default:
tactic: uniqueness
presort: C
prio:

isFactName "ReceiverKeySimple"
prio:

regex "senc\(xsimple" | regex "senc\(~xsimple"
prio: {smallest}

regex "KU\(~key"

The command tamarin-prover --prove SourceOfUniquenessTactic.spthy
verifies the property in 10 steps.

16.4 Oracles

Oracles are programs that modify the order in which Tamarin applies proof steps
by modifying Tamarin’s baseline heuristic, similar to tactics. In contrast to tactics,
which are part of Tamarin’s syntax, oracles are external scripts called by Tamarin.

The oracle is used when the heuristic o or O is specified, e.g., through the
command-line options --heuristic=o or --heuristic=O. The oracle’s file-
name can be specified using the --oraclename=ORACLEFILE option. If no
such filename is given, Tamarin uses the default oracle filename ./oracle.
Alternatively, the oracle program can be specified on a per-lemma basis, e.g.,
lemma lname[heuristic=O "ORACLEFILE"].

The difference between o and O is the pre-sorting of the proof methods provided to
the oracle. O is the recommended heuristic, as it pre-sorts using the default smart

16.4 Oracles 255

heuristic s. That means that, as long as the oracle itself makes no changes to the
ordering of proof steps, these steps are then ordered as by the default smart heuristic.
The o heuristic does not pre-sort and leaves proof methods in the order they appear
in the system, similar to the consecutive C heuristic, which returns proof steps in the
order that their facts were created.

The oracle program receives from Tamarin as input the list of possible next proof
methods for the current constraint system, and it outputs to Tamarin a sequence of
numbers that is a reordering of some subset of the proof methods, as identified by
their number in the input. The numbers output to Tamarin are given the highest
priority, in the order listed. Moreover, all remaining proof methods that the oracle
does not list are appended at the end, in their original order. As a result, an oracle
returning the empty sequence results in the default smart heuristics ordering (when
using O) or in the order they appear in the constraint system (when using o). Note that
an oracle program influences the heuristics, but has no effect on the correctness of
Tamarin’s results as it cannot (accidentally or otherwise) suppress applicable proof
methods.

To clarify this, suppose Tamarin provides 5 possible proof steps, and the oracle
decides that number 3 is best, and number 2 is second best, and it does not care about
the rest. Then the oracle would return the sequence 3, 2 to Tamarin, and the final
ordering will be 3, 2, 1, 4, 5. As Tamarin always applies the first highest-priority
proof step, only the first step returned is really important. However, sorting all of them
helps when inspecting a proof state in the GUI manually and is anyway a side-effect of
giving a generic reordering of as many proof steps as one has identified in the oracle.
The actual format is as follows. Proof methods match the regular expression (+.):(.+)
where (+.) is the method’s index, and (.+) is the method. These methods have the
same format as those visible in the GUI, without the solve(...) around it. The
oracle calls are visible on the command line between START INPUT, START OUTPUT,
and END Oracle call.

Consider again the SourceOfUniqueness example from the previous section. Instead
of using a tactic, one can also use an oracle as follows, using the file at SourceOfU-
niqueness.spthy.
theory SourceOfUniqueness begin

heuristic: o "SourceOfUniqueness.oracle"

Here, the included heuristic option o selects the oracle option (purposely the one
based on C, the consecutive heuristic), so it need not be passed on the command line
later. The filename that follows names the oracle file to be used, which also does not
need to be passed as argument. The remainder of the theory is the same as above.
builtins: symmetric-encryption

rule generatecomplicated:
[In(x), Fr(~key)]
--[Complicated(x)]->
[Out(senc(x,~key)), ReceiverKeyComplicated(~key)]

256 16 Reducing Proof-Construction Time

rule generatesimple:
[Fr(~xsimple), Fr(~key)]
--[Simpleunique(~xsimple)]->
[Out(senc(~xsimple,~key)), ReceiverKeySimple(~key)]

rule receive:
[ReceiverKeyComplicated(keycomplicated)
, In(senc(xcomplicated,keycomplicated))
, ReceiverKeySimple(keysimple)
, In(senc(xsimple,keysimple))
]
--[Unique(<xcomplicated,xsimple>)]->
[]

// artificially complicate occurrences of the event Complicated(x)
restriction complicate:
"All x #i. Complicated(x)@i

==> (Ex y #j. Complicated(y)@j & #j < #i)
| (Ex y #j. Simpleunique(y)@j & #j < #i)"

lemma uniqueness:
"All #i #j x. Unique(x)@i & Unique(x)@j ==> #i=#j"

end

Similarly to the tactic from the previous section, the oracle prioritizes solving
the ReceiverKeySimple state facts, followed by solving encryptions of the form
senc(xsimple) and senc(~xsimple), and lastly KU(~key), before just using the
default.

We can then use the following oracle script. The filename should be
SourceOfUniqueness.oracle, and the file is available at SourceOfUnique-
ness.oracle, as specified in the theory, and the user must ensure that the script can be
executed from the command line. On most systems this requires setting the script to
be an executable file, and checking that python3 is present and can be found through
/usr/bin/env.
#!/usr/bin/env python3

import re
import os
import sys
debug = True

lines = sys.stdin.readlines()
lemma = sys.argv[1]

INPUT:
- lines contain a list of "%i:goal" where "%i" is the index of the goal
- lemma contain the name of the lemma under scrutiny
OUTPUT:
- (on stdout) a list of ordered index separated by EOL

rank = [] # list of list of goals, main list is ordered by priority
maxPrio = 110

16.4 Oracles 257

for i in range(0,maxPrio):
rank.append([])

if lemma == "uniqueness":
for line in lines:

num = line.split(':')[0]
if re.match('.*ReceiverKeySimple.*', line):

rank[90].append(num)
elif re.match('.*senc\(xsimple.*', line) or \

re.match('.*senc\(~xsimple.*', line):
rank[80].append(num)

elif re.match('.*KU\(~key.*', line):
rank[50].append(num)

an optional catch-all rank can be used, but is not required
else:
rank[40].append(num)

else:
exit(0)

Ordering all goals by ranking (higher first)
for listGoals in reversed(rank):

for goal in listGoals:
sys.stderr.write(goal)
print(goal)

With the theory and oracle as above, the command
tamarin-prover --prove SourceOfUniqueness.spthy verifies the property
in just 10 steps.

One can use this oracle as a template, and simply add different lemma names to the
one lemma listed here, or write separate cases below for a different ordering for other
lemmas. This makes it easy to have specialized oracles per lemma, or allow multiple
lemmas to use the same oracle steps.

One benefit of oracles over tactics is that oracles can be changed on the fly, for
example, while exploring a proof in interactive mode, as they are external to the
Tamarin theory. In contrast, when changing a tactic, one needs to reload the theory.
Oracles are more restricted than tactics for pre-sorting proof methods: oracles only
allow pre-sorting with s or C, whereas tactics allow pre-sorting with any heuristic.

Note that the use of an oracle introduces an external dependency, namely, Tamarin
must be able to find and execute the oracle executable or script with the right
interpreter. Specifying oracle paths and script interpreters is both system-dependent
and release-dependent: oracles that work on one system can fail on other systems
or after system updates. In practice, this can often be easily fixed. We describe
some common error messages around the use of oracles and potential solutions in
Section 11.4.

Chapter 17

Analyzing Protocol Families

Tamarin’s standard usage is to analyze the design of a given security protocol or
perhaps accompany the evolution of that design, checking the protocol after each
modification. But Tamarin can also be used to compare protocols and even analyze
families of related protocols. This can be used to determine the differences in the
protocols’ strengths with respect to the properties they meet, the adversaries they
resist, or even where in the protocol run particular properties are established. Such
an analysis supports protocol implementers in choosing the protocol variant that
best matches the guarantees they need for their specific use case. For example,
for resource-constrained devices one might be willing to sacrifice some security
guarantees for less computation or communication. Alternatively one might trade off
privacy for security or vice versa.

In [67], Girol, Hirschi, Sasse, Jackson, Cremers, and Basin used Tamarin to
analyze a large family of protocols, namely the protocols from the Noise Protocol
Framework [98]. In this chapter, we use this as an example to show how one can
analyze such a family in Tamarin and the benefits of doing so.

17.1 Noise Protocol Framework

The Noise Protocol Framework [98] by Trevor Perrin describes a large set of security
protocols, where keys used for authenticated encryption are computed from different
combinations of Diffie-Hellman key exchanges, using varying combinations of static
(long-term) and ephemeral (short-term) keys. The main motivation for the framework
is that for different use cases, key distribution scenarios, and threat models, one
might require a specific variant of a Diffie-Hellman key exchange. In this chapter,
we will refer to such a Diffie-Hellman key exchange variant as a handshake. The
Noise framework includes a high-level specification language that can be used to
specify arbitrarily many different protocols, and the Noise Framework documentation
provides 53 examples of specific protocols specified this way. These protocols

259

260 17 Analyzing Protocol Families

NN: KK:
-> e -> s
<- e, ee <- s

...
-> e, es, ss
<- e, ee, se

Fig. 17.1: Two Noise handshakes, NN and KK, described in the high-level Noise
language.

cover numerous scenarios ranging from handshakes between unidentified parties to
handshakes between parties having pre-shared static asymmetric and symmetric keys.
Some of these protocols are well known and are used in practice. For example, one
such protocol is the key exchange protocol underlying Wireguard [55], which is a
Virtual Private Network (VPN) that is part of the Linux kernel and used in multiple
commercial VPN applications.

Let us briefly review how Noise protocols are defined, following the account from [67].
The protocols are constructed from a small set of primitives that we have: a Diffie-
Hellman group, a hash function, a Key Derivation Function (KDF) (Section 12.2.2),
and an Encryption with Associated Data (AEAD) cipher (Section 15.2.3). Each
handshake is described by a pattern with two parts, pre-messages and messages. The
former describe setup assumptions, like the keys that parties share using some public
key infrastructure. The latter describes the operations that each party performs when
sending or receiving handshake messages. Note that parties can have different kinds
of keys that they use in the handshake: each party has a long-term static public-private
key pair and/or an ephemeral public-private key pair.

Noise has its own custom language for describing and naming handshakes. We omit
details and just illustrate it on two examples taken from [98]. Figure 17.1 provides
examples in Noise syntax and Figure 17.2 gives the corresponding protocols in a
more conventional MSC syntax. Note that we have used colors, which are not part of
Noise’s syntax, to suggest how parts of the two figures correspond to each other.

The first Noise handshake is named NN. In Noise’s handshake names, ‘N’ indicates
that no pre-shared static key is available, so ‘NN’ indicates this for both partners.
This describes an unauthenticated Diffie-Hellman handshake built from two message
patterns. In this handshake, there are no pre-messages sent, and hence only the second
part is specified.

In the first message, the initiator generates an ephemeral private key 𝑒, and sends its
ephemeral public key 𝑔𝑒, indicated by the key token e in the first message pattern. Each
message sent ends with a payload, protected using AEAD under the best available key
(not illustrated in the Noise syntax, this happens implicitly at the end of all message
patterns). Here, 𝑝1 is sent in the clear. In the second message, the responder generates
and sends his own ephemeral key 𝑔𝑒′ , indicated by token e in the second message
pattern. The token ee means that when processing the second message, both parties

17.1 Noise Protocol Framework 261

Initiator

e

Responder

e′

g e , p1

g e′ , aead(p2, kdf(g
ee′))

(a) NN handshake

Initiator

e, s, g s′

Responder

e′, s ′, g s

k1 := kdf(g es′ , g ss′)

g e , aead(p1, k1)

k2 := kdf(k1, g
ee′ , g se′)

g e′ , aead(p2, k2)

(b) KK handshake

Fig. 17.2: MSCs for the handshakes of Figure 17.1. Here 𝑒, 𝑒′ (respectively 𝑠, 𝑠′)
are ephemeral (respectively static) private keys and the 𝑝𝑖 are payloads exchanged
during the handshake. We name the parties along with the data they initially know.
In transport mode, payloads are encrypted with the last key material used in the
handshake. For legibility, we omitted the associated data of AEAD encryptions,
which roughly corresponds to the hash of all preceding sent messages along with
the public keys in pre-messages.

now derive a Diffie-Hellman term from their respective ephemeral keys. So, after
the second message, the initiator knows its private key 𝑒 and the responder’s public
key 𝑔𝑒′ and she can thus compute 𝑔𝑒𝑒′ . Symmetrically, the responder knows 𝑔𝑒 and
𝑒′ and can compute 𝑔𝑒𝑒′ = (𝑔𝑒)𝑒′ . The resulting shared value 𝑔𝑒𝑒′ is used by both
parties to construct a shared secret, which is the initial current key, and is used to
protect payloads.

The second example, ‘KK’ is a Noise handshake for a kind of authenticated Diffie-
Hellman key exchange, where the parties combine different keys using a KDF. Here
‘K’ means that a party already knows its communication partner’s static public key.
The ellipsis (...) indicates the end of the first part (pre-messages) and the start of
the second part (handshake messages).

There are two pre-messages that contain the same static key token s, indicating that
both parties already know their communication partner’s static public key before
starting the handshake. Namely, the initiator (respectively responder) knows its static
private key 𝑠 (respectively 𝑠′) and its partner’s static public key 𝑔𝑠′ (respectively 𝑔𝑠).
In the first handshake message, the initiator

1. generates a fresh 𝑒 (for key token e),

2. initializes the current symmetric key as empty,

3. computes the DH term 𝑔𝑒𝑠
′ (DH token es) and combines it with the current

symmetric key that can now be used,

262 17 Analyzing Protocol Families

4. computes the DH term 𝑔𝑠𝑠
′ (DH token ss) and again combines it with the current

symmetric key (the resulting value is denoted as 𝑘1 in Figure 17.2), and

5. sends 𝑔𝑒 together with the first payload protected using AEAD under the current
symmetric key 𝑘1 with the transcript of all messages exchanged so far as additional
data.

When receiving the corresponding message (i.e., the pair ⟨𝑔𝑒, 𝑐⟩), where 𝑐 is the
encrypted payload), the responder performs the same computations and obtains the
symmetric key 𝑘1 and can therefore decrypt 𝑐.

For the second message, the responder generates and sends 𝑔𝑒′ (key token e),
computes two DH terms corresponding to ee and se, and obtains the symmetric key
𝑘2 accordingly, which importantly includes 𝑘1 in the key derivation. Similarly, the
message ends with the second payload protected by AEAD with the key 𝑘2 and the
hash of all previous communication steps as additional data.

Finally, message transport can start where all payloads are protected with AEAD
using a derivative of the final symmetric key 𝑘2 and empty additional data.

17.2 Analysis approach

Given that the Noise specification language can specify an arbitrary number of
different protocols, it is desirable to support their systematic analysis and comparison.
This is practically relevant for helping practitioners to determine which Noise protocol
they should use for a given scenario and initial key distribution. It is also theoretically
relevant. Since Noise offers an unbounded number of protocols, one may wonder if
they are all useful or whether some Noise protocols are subsumed by others?

Carrying out a systematic comparison of the Noise protocols is, however, quite
challenging. To start with, one must deal with the sheer number of protocols under
consideration and analyze all of them with respect to different adversary models.
Afterwards, one must make sense of the results, e.g., by comparing or visualizing them
in some systematic way. Finally, for most classical protocols, one usually considers
the security guarantees established after the entire protocol has executed. However,
as we have seen already, for the Noise protocols, different messages may be sent
encrypted with different keys and therefore come with different security guarantees.
Hence a finer-grained analysis is necessary concerning when different guarantees are
established.

Let us expand on this last point. The Noise protocols are designed for use in a
variety of real-world settings with differing requirements. One such requirement is
to minimize latency for message transmission: participants would like to send and
receive messages as early as possible. For example, protocols may send messages
during the early phases of the protocol’s execution, where payloads are encrypted
just using preliminary keys with relatively weak security guarantees. This is because

17.2 Analysis approach 263

sufficient keying material has yet to be exchanged to generate a session key with
stronger security guarantees (where “stronger” means it can resist adversaries with
more compromise capabilities). In summary, messages sent early on may satisfy
security guarantees different from those sent later in the protocol’s execution.

All of the above can be captured with appropriate lemmas, but this requires many
lemmas. Namely, to characterize and compare the different protocols, one must prove
(or find counterexamples to) a large set of lemmas, each of which makes a statement
about the security properties of a Noise protocol after some combination of messages
has been exchanged. Moreover, we also consider these properties with respect to a
hierarchy of different adversaries, with different compromise capabilities, and we
evaluate their respective impact on the protocol’s resulting security properties. The
combination of these factors, namely

• the Noise protocol considered,

• different combinations of properties checked (e.g., secrecy, authenticity,
anonymity),

• the steps where the properties are checked, and

• the set of (atomic) adversary capabilities considered

leads to hundreds of thousands of proof obligations just for the 53 documented Noise
protocols, where a proof obligation is a particular choice for each of these factors.
Tackling this combinatorial explosion requires an efficient way to automatically and
uniformly handle all of these relevant problems.

To tackle this problem, we built a special purpose tool, called Vacarme (meaning
“lots of noise” in French) that uses Tamarin as a subroutine for protocol classification.
Given a Noise protocol, for a set of adversary capabilities (e.g., key compromise)
and standard security goals (e.g., secrecy), Vacarme generates lemmas involving all
combinations of the goals holding under the different subsets of adversary capabilities.
These lemmas are quite detailed in that they also attribute each message in a Noise
protocol with the maximal security guarantees it achieves in the form of the strongest
threat models under which confidentiality, authentication, or anonymity holds. The
precise statement of the lemmas and the details behind the analysis are rather technical
and may be found in [67]. Here we restrict ourself to some remarks.

Proving each individual lemma builds directly on the following topics, covered earlier
in this book:

• how to specify protocols in general;

• the built-in Diffie-Hellman equational theory (Section 3.1.4);

• how to specify security properties (Chapter 5) and threat modeling (Section 10.3)
with a lattice of threat models; and

• how to use oracles and tactics.

264 17 Analyzing Protocol Families

NKpsk0

NKpsk2

NXpsk2

KNpsk0

KNpsk2 INpsk1

INpsk2

XNpsk3

NNpsk0

NNpsk2

NN

X1N

XN

I1N

IN

KN

K1N

NK

NK1

NX1

NX

Fig. 17.3: Hierarchy of secrecy and agreement guarantees for the Noise protocols that
do not require both the initiator and the recipient to have a static key. Here psk stands
for the existence of a pre-shared symmetric key and is appended to a pattern name. A
psk followed by a number delays the use of the psk until that message. Finally, psk0
indicates the use of the psk in the initial message. For ease of reading, variants with a
psk are shown in rectangles, while those without psk are given in rounded rectangles.

The last point is particularly relevant as analyzing a very large set of lemmas requires
full automation.

Even with automation, the only way to make the analysis feasible is to reduce the
number of lemmas as much as possible, in a sound way. For this, Vacarme employs a
dynamic filtering approach that reduced the number of Tamarin lemmas analyzed
to ca. 150,000. To do this, Vacarme not only starts Tamarin runs and collects
the results, it decides which other evaluations are to be given to Tamarin, and
which ones are unnecessary due to the properties and adversary capabilities under
consideration. For example, if in one invocation Tamarin determines that a given
property fails, then Vacarme can immediately conclude that all logically stronger
properties also fail, without rerunning Tamarin. Also, a property proven with respect
to one adversary model will hold for other adversary models with fewer capabilities.
For this analysis, Vacarme carries out a generalized binary search over the space of
adversary capabilities.

17.3 Example results for Noise 265

17.3 Example results for Noise

We give an example of one of the results of Vacarme’s analysis in Figure 17.3.
Vacarme outputs not only detailed analysis results, but it also generates protocol
security hierarchies (see also [11]) like the one shown in the figure. The security
hierarchy orders protocols for achieving both secrecy and agreement; however
anonymity is not a goal, as including anonymity would lead to a completely different
ordering. The protocols are all built from the Noise handshake patterns. Protocols
lower in the hierarchy, like NN, are weaker than protocols higher in the hierarchy, like
KN, for example. Also, we see that protocol patterns using a pre-shared symmetric key
(with psk in the name) are stronger than those without. This is maybe not surprising,
but visualizing these relationships helps provide a detailed understanding of the
patterns.

This kind of large-scale analysis can provide fundamental insights into a particular
design space, well beyond what is feasible by human analysis alone, thereby supporting
designers in their protocol development and selection process. The analysis produced
by Vacarme yielded fine-grained results: for each Noise protocol and each of its
protocol steps, it established the strongest adversary under which it is secure. Moreover,
the analysis showed that some Noise protocols offer clearly better security properties
than others, while other protocols are simply incomparable.

Part VI

Outlook

Chapter 18

Impact in Practice

In this book, we have provided guidance on using Tamarin and have given illustrations
of its use. In this chapter, we turn to the question of how Tamarin can be used
on substantial, real-world protocols and, in particular, our experience with such
large-scale verification efforts and the associated benefits.

The examples we give, TLS, 5G Authenticated Key Agreement, and EMV, are
substantial in terms of both their specifications’ size and complexity, and their
practical relevance. TLS underlies most secure communication in the Internet between
clients (computer, browsers, etc.) and servers, 5G is the predominant protocol used
for cellular communication, and EMV governs most electronic payments made using
credit and debit cards. Given the size of these specifications, we will only highlight
what was accomplished and the lessons learned, and we provide pointers to the
literature for further details.

Note that we presented 5G Authenticated Key Agreement previously, in Chapter 12.
The emphasis there was on providing a case study on how to model and analyze a
protocol of realistic size in Tamarin. Here we focus on the practical relevance of this
analysis.

18.1 TLS 1.3

Our first success story concerns the Transport Layer Security (TLS) protocol, which
is probably the most used security protocol, world over. It underlies all secure internet
connections that use HTTPS, where it represents the ‘S’, and many other applications
that use TLS as their transport protocol. In the web setting, TLS is typically used to
establish a unilaterally authenticated secure channel between a client, such as a web
browser, and a server hosting a website or service. The TLS protocol is an Internet
Engineering Task Force (IETF) standard, initially based on the Secure Sockets Layer

269

270 18 Impact in Practice

(SSL) protocol. It has evolved considerably since its first release as TLS 1.0 in 1999,
leading to TLS 1.3 defined in RFC 8446 [101] in 2018.

The core TLS protocol is a key exchange protocol that supports numerous modes
and options. For example, TLS contains a negotiation mechanism to agree on cipher
suites and options such as mutual or unilateral authentication. Moreover, each option
has many alternatives. The key exchange protocol produces symmetric keys for the
transport layer protocol, which uses a symmetric cipher to encrypt and authenticate
message payloads.

In addition to this core functionality, TLS also supports starting connections based on
shared symmetric keys, resumption and rekeying mechanisms, out-of-band authenti-
cation, and even mechanisms to upgrade unilaterally authenticated connections to
mutually authenticated ones. Furthermore, new versions of TLS must be backwards
compatible with previous versions, while ensuring that parties agree to use the most
secure option that they both support, even in the presence of a network adversary
attempting so-called downgrade attacks.

18.1.1 Tamarin analysis

TLS versions prior to 1.3 had been developed by engineers with little academic
involvement. These older TLS versions were also plagued by numerous security
vulnerabilities. When the development of TLS 1.3 started, the IETF reached out to
several academic teams to help with its development and to ensure that they would
achieve the most secure TLS protocol yet.

As part of this wider effort during TLS 1.3’s development, Cremers, Horvat, Hoyland,
Scott, and van der Merwe built several Tamarin models of TLS 1.3 [45,46]. This
was a challenging process. Many aspects of the standard were initially underspecified
and were rapidly changing. Moreover, the protocol’s complexity was at the limits of
what Tamarin could handle at the time.

During the standard’s development, which involved around 30 draft revisions, we
incrementally built models of the standard as it evolved. The effort involved was
several person-months, the majority of which were dedicated to understanding the
details of the TLS 1.3 standard under development.

During our analysis of the transition between the 10th and 11th draft of the TLS 1.3
standard, we found an attack with Tamarin on the proposed implementation of the
“delayed authentication” mechanism to upgrade unilateral connections. The attack
applies to clients and servers that use client certificates, and combines three modes:
the initial key exchange, the resumption mechanism, and the delayed authentication
mode. The attack allows malicious server owners (e.g., a web forum) to impersonate
their clients towards other servers (e.g., the client’s bank), violating the main goal of
the delayed authentication mechanism [46].

18.2 5G-AKA 271

18.1.2 Impact and lessons learned

The Tamarin analysis directly helped prevent a broken mechanism for delayed
authentication from being standardized and implemented. It also helped to clarify
the exact guarantees for mutual agreement on the status of connections and it helped
those involved in its standardization to gain confidence in the security of the final
TLS 1.3 standard [101].

When Tamarin found the attack described above, the individual modes had already
been carefully scrutinized by designers and cryptographers. The attack was missed
because it depends on subtle interactions between the modes. Notably, the attack
involves at least 18 network messages, uses three modes, and involves the adversary
feeding random values from one connection into the other. Such interactions are
extremely difficult to find by human inspection.

Our interaction with IETF was very constructive. The standard was amended with
protocol changes on the basis of our work, thereby avoiding the broken mechanism.
We performed an in-depth analysis of the near-final standard, showing that it satisfies
its main security properties [45]. Additionally, our analysis revealed several subtle
behaviors and helped clarify the exact guarantees that the standard provides, which
were then documented in the final standard.

18.2 5G-AKA

Our second success story revolves around the 5G-AKA protocol. We already described
this case study in Chapter 12, but now repeat the key points, and show the Tamarin
features used. 5G is the latest generation of mobile communication technology,
designed for higher data transmission, lower latency, and improved security. The 5G
standard runs over thousands of pages of documentation. The most critical component
for its security is 5G-AKA, the 5G key agreement protocol that is used by the mobile
user device (namely its SIM card) and the customer’s home network (the service
provider one has a contract with) to agree on a shared key. All other keys are derived
from this shared key. Hence the protocol’s correctness is critical for the user’s data
security, the authenticity of messages and calls they receive, the connections they
start, and for billing based on usage (call time or data).

5G-AKA is complex! Its complexity stems not just from the specification’s size,
but also the different contexts where the protocol can be used. For example, when
roaming, the user device may connect to mobile networks (called serving networks)
different from the service provider. The protocol then connects three parties, rather
than just two, where only two parties, the user device and home network, initially share
secrets. Other complexities arise due to technological and backwards compatibility
constraints. For example, since older SIM cards lack the ability to create randomness,
the protocol uses a counter to prevent replay attacks rather than fresh randomness.

272 18 Impact in Practice

However, to derive shared keys, both parties’ counters must be equal and this requires
a resynchronization sub-protocol that is used whenever messages are lost (e.g., in
mobile scenarios when one travels through tunnels).

Some of the authors of this book had the opportunity of working with a company that
was part of the industrial standardization body 3GPP, responsible for standardizing
5G-AKA. This collaboration gave us access to both the 5G specification and 5G
specialists, and our focus was on 3GPP’s TS 33.501 document. We built initial
models for versions leading up to and including v0.7.1 with promising preliminary
results. Unfortunately flaws were introduced in the following version, which we
discovered using Tamarin, and these were subsequently fixed prior to the final
version, due to our disclosure. The resulting model with successful verification of
properties (except privacy) was then for the protocol from v15.1.0 of Release 15 of
TS 33.501. Additionally, we uncovered privacy problems that could not be fixed in
the 5G standard as doing so would require a substantial protocol redesign.

18.2.1 Tamarin analysis

5G-AKA was verified using Tamarin by Basin, Dreier, Hirschi, Radomirović, Sasse,
and Stettler [23]. This started with an in-depth reading of the relevant protocol
documents, as well as discussions with those involved in its standardization. From
there, we extracted an abstract version of the protocol, which we converted into
an executable, analyzable Tamarin model. This involved, among other challenges,
handling complications that arose in the resynchronization protocol, the modeling of
the sequence numbers for that, and the use of exclusive-or operations described in
Chapter 14.

The majority of the effort spent was the several person-months needed to understand
the specification; the time needed to subsequently formalize the resulting model was
relatively short. Some additional person-months were needed for the verification,
in particular writing proof strategies to help automate it. Along the way, we found
flaws, which we then reported to the 3GPP. With one exception, these flaws were
subsequently fixed in the standard. The final verification result is with respect to the
corrected version.

The flaw in 5G that was not repairable concerned privacy, as previously mentioned.
The privacy of the user’s identity is violated for the 5G-AKA protocol by a fairly
simple replay attack that exploits the resynchronization protocol. A further iteration
(perhaps 6G?) should eliminate counter-based mechanisms to solve this problem.
Nevertheless, 5G-AKA is still an improvement over 4G, as in 5G the adversary must
be active and send messages to check if a specific user is nearby. In contrast, in 4G
a passive adversary can simply listen to radio traffic and learn all the identifiers of
users who are near its attack device using so-called IMSI catchers.

18.3 EMV 273

Follow-up work by Cremers and Dehnel-Wild [42] adapted the models to incorporate
a more fine-grained view of the internal parties. This analysis revealed several unstated
assumptions in the standard. If those assumptions are not upheld, flaws such as the
incorrect attribution of customers for billing purposes are again possible.

18.2.2 Impact and lessons learned

The practical impact of our Tamarin analysis [23] is that multiple mistakes in
5G-AKA were discovered and corrected. As a result, the protocol now standardized
provides appropriate authentication and secrecy properties, which was not the case
before. The most critical vulnerability found with Tamarin, which was also fixed,
was a protocol error that allowed the adversary to induce confusion between users for
the home network. For example, the data or time that are used and should be billed to
customer A could be incorrectly billed to another customer B. This disclosure led
the authors and the publication [23] to be admitted to the “GSMA Mobile Security
Research Hall of Fame” as CVD-2018 CVD#0012. The disclosure process to this
industry consortium was unfortunately less straightforward than for TLS 1.3, where
the IETF explicitly solicited academic input. Despite quickly finding the problem
after the update from v0.7.1 and providing a fix that was ultimately used, it took
months to get the problem fixed.

5G-AKA demonstrates that complex, large-scale industry protocols are directly within
Tamarin’s scope. However, having a direct interface to the standardization body
would help to better integrate Tamarin’s usage into the standardization process. As
is currently still the case, the authors had to use an external vulnerability disclosure
process. Hence it took a long time (over 6 months) after the information was provided
before the proposed fix was finally applied, despite multiple intermediate versions
being released. Furthermore, co-development of the standards and proofs would
accelerate the feedback and improvement process as we were only able to analyze
each version after it was made public.

18.3 EMV

Our third success story concerns EMV, which is the international standard for credit
and debit card payments. This standard is used worldwide for payments with payment
cards such as Mastercard, Visa, and American Express. Over 80% of all global
payments use EMV and up to 98% in many European countries. For payments,
each user has an agreement with a bank, receives a payment card, and can use it
at merchants. This offers convenience, availability, and hopefully security. EMV
supports both a contact version, where the card is inserted into a payment terminal
(where a PIN is often needed), and a contactless version, where the card is simply

274 18 Impact in Practice

held near the reader. A variation of contactless payments is when a mobile phone
simulates a linked physical card.

EMV’s complexity comes from the large number of parties supporting the standard,
backwards compatibility with the billions of cards that were previously issued and are
difficult to change, and the large number of terminals used at merchants, where change
is also very slow. This means that legacy support must be considered throughout the
protocol.

As EMV is the worldwide standard in card payments, it is an attractive attack target.
Verifying its security claims is thus desirable, especially given that it is a complex
protocol, no formal analysis was previously done prior to our analysis with Tamarin,
and older versions of the protocol exhibited numerous design weaknesses. Hence,
one may expect that a formal analysis of EMV would uncover further issues requiring
improvements.

18.3.1 Tamarin analysis

Basin, Sasse, and Toro-Pozo used Tamarin to analyze EMV [24]. Our formalization
again started with a careful reading of the technical documentation. As we did
not have access to experts who were involved in the protocol’s development and
standardization, as in the 5G case, we instead cross-checked our understanding using
real-world transaction logs. In this way, we could create a model that matched both
the documentation and actual usage. This modeling process was time-consuming and
took over six person-months of work. Independently, we developed an app to check
that any issues we found using Tamarin would actually be exploitable in realistic
scenarios.

The models developed [24] included the contact and contactless modes, and many
different sub-protocols (required due to the aforementioned backwards compatibility),
as well as the differences between the protocol used by Visa and the one used by
Mastercard. For the contact setting, the complexity stems from the 24 different,
in parts interworking, protocols and choices such as online or offline mode, with
or without PIN, different encryptions of the PIN, etc. These include three major
categories, SDA, DDA, and CDA, referring to the possible data authentication
methods, which result in very different security properties. The protocols also use
a wide range of cryptographic machinery including message authentication codes,
signatures, exclusive-or, and certificates.

In the contactless case, there are 16 different versions of the protocol, split between
the Visa and Mastercard groups. Tamarin found novel attacks in the contactless
setting against Visa’s protocol due to the lack of authentication on the parameter
stating whether or not a PIN must be entered for high-value transactions. This attack
enabled us to bypass the PIN on transactions with Visa cards above the threshold that
requires a PIN, which is, for example, typically 50 Euros in European countries.

18.3 EMV 275

We went further and developed and modeled fixes for this vulnerability and used
Tamarin to prove that the fixes suffice to protect card transactions by enforcing
PIN use. In additional follow-up work by Basin, Sasse, and Toro-Pozo [18], we
found using Tamarin that Mastercard cards are vulnerable as well. This is due to a
confusion attack whereby the datagrams sent by the Visa protocol and Mastercard
protocol are interchangeable by a man-in-the-middle, which we also demonstrated
in practice with our app. We extended our Tamarin model to allow a mismatch
between the payment network brand and card issuer brand, resulting in another 16
models, split between the Visa and Mastercard protocols. We again proposed fixes.
However, during the disclosure process, Mastercard was able to activate another layer
of detection in their payment network that provided an alternative way to eliminate
the attack on Mastercard cards, which was effective immediately.

Our analysis of EMV built on the following topics, covered earlier in this book:

• how to specify a protocol in general;

• how to combine built-in and user-defined equational theories (Section 3.1.4);

• how to specify security properties (Chapter 5) and threat modeling (Section 10.3);

• how to use channels (Section 10.4; and

• the use of oracles (Section 16.4).

Our objective was to analyze all the 40 different versions (24 for the contact case and
16 for the contactless case) in a manageable way that is less error-prone than manually
writing 40 models. To accomplish this, we generated the actual models from two base
models: one for the contact case and one for the contactless case. This generation
was done external to Tamarin, using Makefiles. For every property of interest, our
Makefile selects which of the 40 possible flows will actually be checked. Note that
analyzing a property on all flows simultaneously would result in either everything
being secure (which is not the case here) or Tamarin returning the first found attack.
In the latter case, this information is too coarse-grained and we therefore analyzed
the different configurations independently. This determines, for each configuration,
whether it is secure or can be attacked.

18.3.2 Impact and lessons learned

The work on EMV provides yet another example of how Tamarin can be used to find
attacks on a substantial, important, real-world protocol. The attacks discovered on
EMV are based on subtle flaws that were buried in the standard for years. Moreover,
we demonstrated that the attacks are practically feasible by exploiting the design flaws
to conduct high-value transactions without using the card’s PIN. As a side remark,
for these attacks we used our own cards, paying for the purchased goods so as to
avoid defrauding any merchant or bank.

276 18 Impact in Practice

Finding flaws in protocol designs is itself only part of the solution. The responsible
parties and standardization bodies must also be convinced of their relevance if they
are to be sufficiently motivated to actually fix their protocols. Unfortunately, and to
our surprise, even with strong evidence produced by exhibiting the attacks on actual
payment cards, and showing that the attacks are practical, not all vendors were willing
to take the required actions.

18.4 Summary

These examples illustrate that tools for security protocol analysis have come a long
way. We have advanced far beyond simple protocols where Alice authenticates
Bob to substantial real-world protocols like those described in this chapter. The
scaling has been in terms of the size, scope, and complexity of the protocols, as
well as the complexity of the adversary model, the properties considered, and the
comprehensiveness of the analysis. The real-world impact has been considerable:
Tamarin’s use has progressed beyond the academic user community, and is now also
embraced by numerous companies working on both proprietary protocols and public
standards.

This scaling has been enabled by progress on numerous fronts. Algorithmic advances in
computing with logical constraints and new algorithms for establishing observational
equivalence have increased both the scope and size of protocols as well as the
properties that Tamarin can handle. This progress has been driven by increasingly
challenging case studies, providing feedback on Tamarin’s limitations and priorities
for improvements. At the same time, the success stories have raised the bar in terms of
complexity and impact, further driving progress. Finally, although security protocol
verification tools originated in the Formal Methods community, continued interaction
with the cryptography community has helped to improve the level of detail that can
now be captured in the protocol models.

There still remains much work ahead. From the technical perspective, pushing
scalability even further remains a challenge. Possibilities here include improved
automation using more intelligent and easily programmable proof strategies, support
for an even greater range of cryptographic primitives, and enabling the reuse of
proofs. Further work is also needed to increase Tamarin’s accessibility, including
improvements to its user interface and better documentation. We hope this book will
contribute to the latter.

References

[1] Abadi, M., Blanchet, B., Fournet, C.: The Applied Pi Calculus: Mobile values,
new names, and secure communication. J. ACM 65(1), 1:1–1:41 (2018).
DOI 10.1145/3127586. URL https://doi.org/10.1145/3127586

[2] Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). J. Cryptol. 20(3), 395 (2007)

[3] Alur, R., Henzinger, T.A., Vardi, M.Y.: Theory in practice for system design
and verification. ACM SIGLOG News 2(1), 46–51 (2015). DOI 10.1145/27
28816.2728827. URL https://doi.org/10.1145/2728816.2728827

[4] An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
Cryptology ePrint Archive, Paper 2002/046 (2002). URL https://eprint.iacr.or
g/2002/046. https://eprint.iacr.org/2002/046

[5] Arquint, L., Wolf, F.A., Lallemand, J., Sasse, R., Sprenger, C., Wiesner,
S.N., Basin, D.A., Müller, P.: Sound verification of security protocols: From
design to interoperable implementations. In: 44th IEEE Symposium on
Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023,
pp. 1077–1093. IEEE (2023). DOI 10.1109/SP46215.2023.10179325. URL
https://doi.org/10.1109/SP46215.2023.10179325

[6] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998). DOI 10.1017/CBO9781139172752

[7] Backes, M., Dreier, J., Kremer, S., Künnemann, R.: A novel approach for
reasoning about liveness in cryptographic protocols and its application to
fair exchange. In: 2017 IEEE European Symposium on Security and Privacy,
EuroS&P 2017, Paris, France, April 26-28, 2017, pp. 76–91. IEEE (2017). DOI
10.1109/EUROSP.2017.12. URL https://doi.org/10.1109/EuroSP.2017.12

[8] Baek, J., Kim, K.: Remarks on the unknown key share attacks. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences 83(12), 2766–2769 (2000)

277

https://doi.org/10.1145/3127586
https://doi.org/10.1145/2728816.2728827
https://eprint.iacr.org/2002/046
https://eprint.iacr.org/2002/046
https://eprint.iacr.org/2002/046
https://doi.org/10.1109/SP46215.2023.10179325
https://doi.org/10.1109/EuroSP.2017.12

278 REFERENCES

[9] Baloglu, S., Bursuc, S., Mauw, S., Pang, J.: Provably improving election
verifiability in Belenios. In: Electronic Voting - 6th International Joint
Conference, E-Vote-ID 2021, Virtual Event, October 5-8, 2021, Proceedings,
Lecture Notes in Computer Science, vol. 12900, pp. 1–16. Springer (2021).
DOI 10.1007/978-3-030-86942-7_1. URL https://doi.org/10.1007/978-3-
030-86942-7_1

[10] Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cremers, C., Liao, K.,
Parno, B.: Sok: Computer-aided cryptography. In: SP, pp. 777–795. IEEE
(2021)

[11] Basin, D., Cremers, C.: Know your enemy: Compromising adversaries in
protocol analysis. ACM Trans. Inf. Syst. Secur. 17(2), 7:1–7:31 (2014).
DOI 10.1145/2658996. URL http://doi.acm.org/10.1145/2658996

[12] Basin, D., Cremers, C., Dreier, J., Sasse, R.: Tamarin book and supplementary
material, including spthy files. https://tamarin-prover.com/book/

[13] Basin, D., Cremers, C., Kim, T.H., Perrig, A., Sasse, R., Szalachowski, P.:
Design, analysis, and implementation of ARPKI: an attack resilient public-key
infrastructure. IEEE Transactions on Dependable and Secure Computing PP,
Issue: 99(3), 393–408 (2016). Http://dx.doi.org/10.1109/TDSC.2016.2601610

[14] Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A
formal analysis of 5G authentication. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18,
p. 1383–1396. Association for Computing Machinery, New York, NY, USA
(2018). DOI 10.1145/3243734.3243846. URL https://doi.org/10.1145/3243
734.3243846

[15] Basin, D., Dreier, J., Sasse, R.: Automated symbolic proofs of observational
equivalence. In: Proceedings of the 2015 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1144–1155. ACM (2015). DOI
10.1145/2810103.2813662. URL http://doi.acm.org/10.1145/2810103.2813
662

[16] Basin, D., Keller, M., Radomirović, S., Sasse, R.: Alice and Bob Meet
Equational Theories, pp. 160–180. Springer International Publishing, Cham
(2015). DOI 10.1007/978-3-319-23165-5_7. URL https://doi.org/10.1007/97
8-3-319-23165-5_7

[17] Basin, D., Radomirovic, S., Schmid, L.: Alethea: A provably secure random
sample voting protocol. In: 31st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pp. 283–
297 (2018). DOI 10.1109/CSF.2018.00028. URL https://doi.org/10.1109/CS
F.2018.00028

[18] Basin, D., Sasse, R., Toro-Pozo, J.: Card brand mixup attack: Bypassing the
PIN in non-Visa cards by using them for Visa transactions. In: 30th USENIX

https://doi.org/10.1007/978-3-030-86942-7_1
https://doi.org/10.1007/978-3-030-86942-7_1
http://doi.acm.org/10.1145/2658996
https://tamarin-prover.com/book/
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1145/3243734.3243846
http://doi.acm.org/10.1145/2810103.2813662
http://doi.acm.org/10.1145/2810103.2813662
https://doi.org/10.1007/978-3-319-23165-5_7
https://doi.org/10.1007/978-3-319-23165-5_7
https://doi.org/10.1109/CSF.2018.00028
https://doi.org/10.1109/CSF.2018.00028

REFERENCES 279

Security Symposium (USENIX Security 21). USENIX Association (2021).
URL https://www.usenix.org/conference/usenixsecurity21/presentation/basin

[19] Basin, D.A., Cremers, C., Horvat, M.: Actor key compromise: Consequences
and countermeasures. In: CSF, pp. 244–258. IEEE Computer Society (2014)

[20] Basin, D.A., Cremers, C., Kim, T.H., Perrig, A., Sasse, R., Szalachowski,
P.: ARPKI: attack resilient public-key infrastructure. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pp. 382–393. ACM (2014). DOI
10.1145/2660267.2660298. URL https://doi.org/10.1145/2660267.2660298

[21] Basin, D.A., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798
standard for entity authentication. Journal of Computer Security 21(6), 817–
846 (2013)

[22] Basin, D.A., Cremers, C.J.F., Miyazaki, K., Radomirovic, S., Watanabe, D.:
Improving the security of cryptographic protocol standards. IEEE Security
& Privacy 13(3), 24–31 (2015). DOI 10.1109/MSP.2013.162. URL http:
//dx.doi.org/10.1109/MSP.2013.162

[23] Basin, D.A., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.:
A formal analysis of 5G authentication. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pp. 1383–1396. ACM (2018). DOI
10.1145/3243734.3243846. URL https://doi.org/10.1145/3243734.3243846

[24] Basin, D.A., Sasse, R., Toro-Pozo, J.: The EMV standard: Break, fix, verify.
In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pp. 1766–1781. IEEE (2021). DOI 10.1109/SP40
001.2021.00037. URL https://doi.org/10.1109/SP40001.2021.00037

[25] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, p. 62–73. Association for
Computing Machinery, New York, NY, USA (1993). DOI 10.1145/168588.1
68596. URL https://doi.org/10.1145/168588.168596

[26] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed
high-security signatures. J. Cryptographic Engineering 2(2), 77–89 (2012).
DOI 10.1007/s13389-012-0027-1. URL https://doi.org/10.1007/s13389-012-
0027-1

[27] Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and
their security analysis. In: IMACC, Lecture Notes in Computer Science, vol.
1355, pp. 30–45. Springer (1997)

[28] Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Public Key Cryptography, Second International
Workshop on Practice and Theory in Public Key Cryptography, PKC ’99,

https://www.usenix.org/conference/usenixsecurity21/presentation/basin
https://doi.org/10.1145/2660267.2660298
http://dx.doi.org/10.1109/MSP.2013.162
http://dx.doi.org/10.1109/MSP.2013.162
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1109/SP40001.2021.00037
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1

280 REFERENCES

Kamakura, Japan, March 1-3, 1999, Proceedings, Lecture Notes in Computer
Science, vol. 1560, pp. 154–170. Springer (1999). DOI 10.1007/3-540-49162-
7_12. URL https://doi.org/10.1007/3-540-49162-7_12

[29] Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of
Ed25519: Theory and practice. In: 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pp. 1659–
1676. IEEE (2021). DOI 10.1109/SP40001.2021.00042. URL https:
//doi.org/10.1109/SP40001.2021.00042

[30] Bruni, A., Drewsen, E., Schürmann, C.: Towards a mechanized proof of
selene receipt-freeness and vote-privacy. In: Electronic Voting - Second
International Joint Conference, E-Vote-ID 2017, Bregenz, Austria, October
24-27, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10615,
pp. 110–126. Springer (2017). DOI 10.1007/978-3-319-68687-5_7. URL
https://doi.org/10.1007/978-3-319-68687-5_7

[31] C.Cremers, Dax, A., Jacomme, C., Zhao, M.: Automated analysis of protocols
that use authenticated encryption: How subtle AEAD differences can impact
protocol security. In: 32nd USENIX Security Symposium, USENIX Security
2023, USA, August, 2023. USENIX Association (2023)

[32] Chaum, D.: Blind signatures for untraceable payments. In: Advances in
Cryptology, pp. 199–203. Springer US, Boston, MA (1983)

[33] Cheval, V., C.Cremers, Dax, A., Hirschi, L., Jacomme, C., Kremer, S.: Hash
Gone Bad: Automated discovery of protocol attacks that exploit hash function
weaknesses. In: 32nd USENIX Security Symposium, USENIX Security 2023,
USA, August, 2023. USENIX Association (2023)

[34] Cheval, V., Jacomme, C., Kremer, S., Künnemann, R.: SAPIC+: protocol
verifiers of the world, unite! In: 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022, pp. 3935–3952.
USENIX Association (2022). URL https://www.usenix.org/conference/usenix
security22/presentation/cheval

[35] Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.: The
Maude formal tool environment. In: International Conference on Algebra and
Coalgebra in Computer Science, pp. 173–178. Springer (2007)

[36] Comon-Lundh, H., Delaune, S.: The finite variant property: How to get
rid of some algebraic properties. In: Term Rewriting and Applications,
16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005,
Proceedings, Lecture Notes in Computer Science, vol. 3467, pp. 294–307.
Springer (2005). DOI 10.1007/978-3-540-32033-3_22. URL https:
//doi.org/10.1007/978-3-540-32033-3_22

https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1109/SP40001.2021.00042
https://doi.org/10.1109/SP40001.2021.00042
https://doi.org/10.1007/978-3-319-68687-5_7
https://www.usenix.org/conference/usenixsecurity22/presentation/cheval
https://www.usenix.org/conference/usenixsecurity22/presentation/cheval
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-540-32033-3_22

REFERENCES 281

[37] Cortier, V., Delaune, S., Dreier, J.: Automatic generation of sources lemmas in
Tamarin: Towards automatic proofs of security protocols. In: ESORICS (2),
Lecture Notes in Computer Science, vol. 12309, pp. 3–22. Springer (2020)

[38] Cortier, V., Delaune, S., Dreier, J.: Automatic generation of sources lemmas in
Tamarin: towards automatic proofs of security protocols. Journal of Computer
Security (2022). To appear

[39] Cremers, C., Dax, A., Medinger, N.: Keeping Up with the KEMs: Stronger
Security Notions for KEMs and Automated Analysis of KEM-based Protocols.
In: CCS, pp. 1046–1060. ACM (2024)

[40] Cremers, C., Dax, A., Naska, A.: Formal analysis of SPDM: security protocol
and data model version 1.2. IACR Cryptol. ePrint Arch. p. 1724 (2022). URL
https://eprint.iacr.org/2022/1724

[41] Cremers, C., Dax, A., Naska, A.: Breaking and provably restoring au-
thentication: A formal analysis of SPDM 1.2 including cross-protocol at-
tacks. Cryptology ePrint Archive, Paper 2024/2047 (2024). URL https:
//eprint.iacr.org/2024/2047

[42] Cremers, C., Dehnel-Wild, M.: Component-based formal analysis of 5G-AKA:
Channel assumptions and session confusion. In: 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019. The Internet Society (2019). URL https:
//www.ndss-symposium.org/ndss-paper/component-based-formal-analysis-
of-5g-aka-channel-assumptions-and-session-confusion/

[43] Cremers, C., Dehnel-Wild, M., Milner, K.: Secure authentication in the grid:
A formal analysis of DNP3 SAv5. J. Comput. Secur. 27(2), 203–232 (2019)

[44] Cremers, C., Düzlü, S., Fiedler, R., Fischlin, M., Janson, C.: BUFFing signature
schemes beyond unforgeability and the case of post-quantum signatures. In:
42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA,
USA, 24-27 May 2021, pp. 1696–1714. IEEE (2021). DOI 10.1109/SP40001.
2021.00093. URL https://doi.org/10.1109/SP40001.2021.00093

[45] Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A com-
prehensive symbolic analysis of TLS 1.3. In: CCS, pp. 1773–1788. ACM
(2017)

[46] Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis
and verification of TLS 1.3: 0-RTT, resumption and delayed authentication.
In: IEEE Symposium on Security and Privacy, pp. 470–485. IEEE Computer
Society (2016)

[47] Cremers, C., Jackson, D.: Prime, Order Please! Revisiting Small Subgroup
and Invalid Curve Attacks on Protocols using Diffie-Hellman. In: CSF, pp.
78–93. IEEE (2019)

https://eprint.iacr.org/2022/1724
https://eprint.iacr.org/2024/2047
https://eprint.iacr.org/2024/2047
https://www.ndss-symposium.org/ndss-paper/component-based-formal-analysis-of-5g-aka-channel-assumptions-and-session-confusion/
https://www.ndss-symposium.org/ndss-paper/component-based-formal-analysis-of-5g-aka-channel-assumptions-and-session-confusion/
https://www.ndss-symposium.org/ndss-paper/component-based-formal-analysis-of-5g-aka-channel-assumptions-and-session-confusion/
https://doi.org/10.1109/SP40001.2021.00093

282 REFERENCES

[48] Cremers, C., Jacomme, C., Lukert, P.: Subterm-based proof techniques for
improving the automation and scope of security protocol analysis. Cryptology
ePrint Archive, Paper 2022/1130 (2022). URL https://eprint.iacr.org/2022/1
130. https://eprint.iacr.org/2022/1130

[49] Cremers, C., Jacomme, C., Naska, A.: Formal analysis of session-handling in
secure messaging: Lifting security from sessions to conversations. Cryptology
ePrint Archive, Paper 2022/1710 (2022). URL https://eprint.iacr.org/2022/171
0. https://eprint.iacr.org/2022/1710

[50] Cremers, C., Kiesl, B., Medinger, N.: A formal analysis of IEEE 802.11’s
WPA2: countering the kracks caused by cracking the counters. In: USENIX
Security Symposium, pp. 1–17. USENIX Association (2020)

[51] Dax, A., Künnemann, R., Tangermann, S., Backes, M.: How to wrap it up — A
formally verified proposal for the use of authenticated wrapping in PKCS#11.
In: CSF, pp. 62–77. IEEE (2019)

[52] Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992). DOI
10.1007/BF00124891. URL https://doi.org/10.1007/BF00124891

[53] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal
on Computing 30(2), 391–437 (2000). DOI 10.1137/S0097539795291562.
URL https://doi.org/10.1137/S0097539795291562

[54] Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983). DOI 10.1109/TIT.1983.10566
50

[55] Donenfeld, J.A.: Wireguard: Next generation kernel network tunnel. In: 24th
Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet
Society (2017). URL https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/wireguard-next-generation-kernel-network-tunnel/

[56] Donenfeld, J.A., Milner, K.: Formal verification of the WireGuard protocol.
Technical Report, Tech. Rep (2017)

[57] Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent
equational theories in automated verification of stateful protocols. In: Principles
of Security and Trust - 6th International Conference, POST 2017, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Lecture
Notes in Computer Science, vol. 10204, pp. 117–140. Springer (2017). DOI
10.1007/978-3-662-54455-6_6. URL https://doi.org/10.1007/978-3-662-
54455-6_6

[58] Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R.: Automated unbounded
verification of stateful cryptographic protocols with exclusive OR. In: 31st

https://eprint.iacr.org/2022/1130
https://eprint.iacr.org/2022/1130
https://eprint.iacr.org/2022/1130
https://eprint.iacr.org/2022/1710
https://eprint.iacr.org/2022/1710
https://eprint.iacr.org/2022/1710
https://doi.org/10.1007/BF00124891
https://doi.org/10.1137/S0097539795291562
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://doi.org/10.1007/978-3-662-54455-6_6
https://doi.org/10.1007/978-3-662-54455-6_6

REFERENCES 283

IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United
Kingdom, July 9-12, 2018, pp. 359–373. IEEE Computer Society (2018).
DOI 10.1109/CSF.2018.00033. URL https://doi.org/10.1109/CSF.2018.00033

[59] Dreier, J., Puys, M., Potet, M., Lafourcade, P., Roch, J.: Formally and practically
verifying flow properties in industrial systems. Comput. Secur. 86, 453–470
(2019). DOI 10.1016/j.cose.2018.09.018. URL https://doi.org/10.1016/j.cose
.2018.09.018

[60] Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude termination tool (system
description). In: International Joint Conference on Automated Reasoning, pp.
313–319. Springer (2008)

[61] Durán, F., Meseguer, J.: A Church-Rosser checker tool for conditional order-
sorted equational Maude specifications. In: International Workshop on Rewrit-
ing Logic and its Applications, pp. 69–85. Springer (2010)

[62] Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the
complexity of bounded security protocols. Journal of Computer Security 12(2),
247–311 (2004). URL http://dl.acm.org/citation.cfm?id=1017273.1017276

[63] Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal
variant termination. J. Log. Algebraic Methods Program. 81(7-8), 898–928
(2012). DOI 10.1016/j.jlap.2012.01.002. URL https://doi.org/10.1016/j.jlap.2
012.01.002

[64] European Payments Council: Guidelines on algorithms usage and key manage-
ment. Tech. rep. (2009). EPC342-08 Version 1.1

[65] Gazdag, S., Grundner-Culemann, S., Guggemos, T., Heider, T., Loebenberger,
D.: A formal analysis of IKEv2’s post-quantum extension. In: ACSAC, pp.
91–105. ACM (2021)

[66] Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic ter-
mination proofs in the dependency pair framework. In: International Joint
Conference on Automated Reasoning, pp. 281–286. Springer (2006)

[67] Girol, G., Hirschi, L., Sasse, R., Jackson, D., Cremers, C., Basin, D.: A
spectral analysis of Noise: A comprehensive, automated, formal analysis of
Diffie-Hellman protocols. In: 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Boston, MA (2020). URL https://www.us
enix.org/conference/usenixsecurity20/presentation/girol

[68] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308
(1988). DOI 10.1137/0217017. URL https://dx.doi.org/10.1137/0217017

[69] Graphviz. https://graphviz.org/

[70] Hirschi, L., Schmid, L., Basin, D.A.: Fixing the achilles heel of e-voting: The
bulletin board. In: 34th IEEE Computer Security Foundations Symposium,

https://doi.org/10.1109/CSF.2018.00033
https://doi.org/10.1016/j.cose.2018.09.018
https://doi.org/10.1016/j.cose.2018.09.018
http://dl.acm.org/citation.cfm?id=1017273.1017276
https://doi.org/10.1016/j.jlap.2012.01.002
https://doi.org/10.1016/j.jlap.2012.01.002
https://www.usenix.org/conference/usenixsecurity20/presentation/girol
https://www.usenix.org/conference/usenixsecurity20/presentation/girol
https://dx.doi.org/10.1137/0217017
https://graphviz.org/

284 REFERENCES

CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, pp. 1–17. IEEE (2021).
DOI 10.1109/CSF51468.2021.00016. URL https://doi.org/10.1109/CSF514
68.2021.00016

[71] Hülsing, A., Ning, K., Schwabe, P., Weber, F., Zimmermann, P.R.: Post-
quantum WireGuard. In: IEEE Symposium on Security and Privacy, pp.
304–321. IEEE (2021)

[72] International Organization for Standardization, Genève, Switzerland.: ISO/IEC
9798-3:1998, Information technology – Security techniques – Entity Authenti-
cation – Part 3: Mechanisms using digital signature techniques (1998). Second
edition

[73] ITU-T: Recommendation H.235 - Security and encryption for H-series (H.323
and other H.245-based) multimedia terminals (2003)

[74] Jackson, D., Cremers, C., Cohn-Gordon, K., Sasse, R.: Seems Legit: Automated
Analysis of Subtle Attacks on Protocols that Use Signatures. In: CCS, pp.
2165–2180. ACM (2019)

[75] Jager, T., Kakvi, S.A., May, A.: On the Security of the PKCS#1 v1.5 Signature
Scheme. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, pp. 1195–1208. ACM (2018). DOI 10.1145/3243734.3243798.
URL https://doi.org/10.1145/3243734.3243798

[76] Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: ASI-
ACRYPT, Lecture Notes in Computer Science, vol. 1163, pp. 36–49. Springer
(1996)

[77] Kiesl, B.: UT Tamarin. Available at https://github.com/benjaminkiesl/ut_tama
rin

[78] Kirchner, C., Kirchner, H.: Equational logic and rewriting. In: J.H. Siekmann
(ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp.
255–282. North-Holland (2014). DOI https://doi.org/10.1016/B978-0-444-
51624-4.50006-X. URL https://www.sciencedirect.com/science/article/pii/B9
78044451624450006X

[79] Kremer, S., Künnemann, R.: Automated analysis of security protocols with
global state. J. Comput. Secur. 24(5), 583–616 (2016). DOI 10.3233/JCS-
160556. URL https://doi.org/10.3233/JCS-160556

[80] Künnemann, R., Steel, G.: YubiSecure? Formal Security Analysis Results
for the Yubikey and YubiHSM. In: Security and Trust Management - 8th
International Workshop, STM 2012, Pisa, Italy, September 13-14, 2012,
Revised Selected Papers, Lecture Notes in Computer Science, vol. 7783, pp.
257–272. Springer (2012). DOI 10.1007/978-3-642-38004-4_17. URL
https://doi.org/10.1007/978-3-642-38004-4_17

https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1145/3243734.3243798
https://github.com/benjaminkiesl/ut_tamarin
https://github.com/benjaminkiesl/ut_tamarin
https://www.sciencedirect.com/science/article/pii/B978044451624450006X
https://www.sciencedirect.com/science/article/pii/B978044451624450006X
https://doi.org/10.3233/JCS-160556
https://doi.org/10.1007/978-3-642-38004-4_17

REFERENCES 285

[81] LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger Security of Authenti-
cated Key Exchange. In: ProvSec, Lecture Notes in Computer Science, vol.
4784, pp. 1–16. Springer (2007)

[82] Lindenberg, C., Wirt, K., Buchmann, J.A.: Formal proof for the correctness
of RSA-PSS. IACR Cryptology ePrint Archive 2006, 11 (2006). URL
http://eprint.iacr.org/2006/011

[83] Linker, F., Sasse, R., Basin, D.: A formal analysis of Apple’s iMessage
PQ3 protocol. Cryptology ePrint Archive, Paper 2024/1395 (2024). URL
https://eprint.iacr.org/2024/1395

[84] Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In: TACAS, Lecture Notes in Computer Science, vol. 1055, pp.
147–166. Springer (1996)

[85] Lowe, G.: A hierarchy of authentication specification. In: 10th Computer
Security Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport,
Massachusetts, USA, pp. 31–44. IEEE Computer Society (1997). DOI 10.110
9/CSFW.1997.596782. URL https://doi.org/10.1109/CSFW.1997.596782

[86] Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Distance-bounding
protocols: Verification without time and location. In: 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pp. 549–566. IEEE Computer Society (2018). DOI 10.1109/
SP.2018.00001

[87] Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Post-collusion security
and distance bounding. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, Novem-
ber 11-15, 2019, pp. 941–958. ACM (2019). DOI 10.1145/3319535.3345651.
URL https://doi.org/10.1145/3319535.3345651

[88] Meier, S.: Advancing automated security protocol verification. Ph.D. thesis,
ETH Zurich (2013)

[89] Menezes, A., Smart, N.P.: Security of signature schemes in a multi-user setting.
Des. Codes Cryptography 33(3), 261–274 (2004). DOI 10.1023/B:DESI.00000
36250.18062.3f. URL https://doi.org/10.1023/B:DESI.0000036250.18062.3f

[90] Merkle, R.C.: Secrecy, authentication and public key systems. Ph.D. thesis,
Stanford University (1979). URL http://www.merkle.com/papers/Thesis1979
.pdf

[91] Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
Theoretical computer science 96(1), 73–155 (1992)

[92] Millen, J., Clark, S., Freedman, S.: The interrogator: Protocol secuity analysis.
IEEE Transactions on Software Engineering SE-13(2), 274–288 (1987). DOI
10.1109/TSE.1987.233151

http://eprint.iacr.org/2006/011
https://eprint.iacr.org/2024/1395
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1145/3319535.3345651
https://doi.org/10.1023/B:DESI.0000036250.18062.3f
http://www.merkle.com/papers/Thesis1979.pdf
http://www.merkle.com/papers/Thesis1979.pdf

286 REFERENCES

[93] Moriarty, K.M., Kaliski, B., Jonsson, J., Rusch, A.: PKCS #1: RSA cryp-
tography specifications version 2.2. RFC 8017, 1–78 (2016). DOI
10.17487/RFC8017. URL https://doi.org/10.17487/RFC8017

[94] Ninet, T.: Formal verification of the Internet Key Exchange (IKEv2) security
protocol. Ph.D. thesis, University of Rennes 1, France (2020)

[95] Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of
TLS. In: SSR, Lecture Notes in Computer Science, vol. 10074, pp. 160–186.
Springer (2016)

[96] Peltonen, A., Sasse, R., Basin, D.: A comprehensive formal analysis of 5G
handover. In: WISEC, pp. 1–12. ACM (2021)

[97] Perrig, A., Canetti, R., Tygar, J.D., Song, D.: TESLA Broadcast Authentication,
pp. 29–53. Springer US, Boston, MA (2003). DOI 10.1007/978-1-4615-0229-
6_3. URL https://doi.org/10.1007/978-1-4615-0229-6_3

[98] Perrin, T.: The noise protocol framework (2018). URL https://github.com/noi
seprotocol/noise_spec/tree/ecdf084ece2bf92b16b1201b6ae5c99d23fb4151.
(revision 34)

[99] Pornin, T., Stern, J.P.: Digital signatures do not guarantee exclusive owner-
ship. In: Applied Cryptography and Network Security, Third International
Conference, ACNS 2005, New York, NY, USA, June 7-10, 2005, Proceed-
ings, Lecture Notes in Computer Science, vol. 3531, pp. 138–150 (2005).
DOI 10.1007/11496137_10. URL https://doi.org/10.1007/11496137_10

[100] Radu, A.I., Chothia, T., Newton, C.J., Boureanu, I., Chen, L.: Practical EMV
relay protection. In: 43rd IEEE Symposium on Security and Privacy, SP 2022.
IEEE (2022)

[101] Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (2018). DOI 10.17487/RFC8446. URL https://www.rfc-
editor.org/info/rfc8446

[102] Schmidt, B., Meier, S., Cremers, C., Basin, D.A.: Automated analysis of
Diffie-Hellman protocols and advanced security properties. In: 25th IEEE
Computer Security Foundations Symposium, CSF 2012, Cambridge, MA,
USA, June 25-27, 2012, pp. 78–94. IEEE Computer Society (2012). DOI
10.1109/CSF.2012.25. URL https://doi.org/10.1109/CSF.2012.25

[103] Schmidt, B., Sasse, R., Cremers, C., Basin, D.: Automated verification of
group key agreement protocols. In: IEEE Symposium on Security and Privacy,
pp. 179–194. IEEE Computer Society (2014)

[104] Smolka, G., Nutt, W., Goguen, J.A., Meseguer, J.: Order-sorted equational
computation. In: H. Aït-Kaci, M. Nivat (eds.) Rewriting Techniques, pp.
297–367. Academic Press (1989). DOI https://doi.org/10.1016/B978-0-12-

https://doi.org/10.17487/RFC8017
https://doi.org/10.1007/978-1-4615-0229-6_3
https://github.com/noiseprotocol/noise_spec/tree/ecdf084ece2bf92b16b1201b6ae5c99d23fb4151
https://github.com/noiseprotocol/noise_spec/tree/ecdf084ece2bf92b16b1201b6ae5c99d23fb4151
https://doi.org/10.1007/11496137_10
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1109/CSF.2012.25

REFERENCES 287

046371-8.50016-X. URL https://www.sciencedirect.com/science/article/pii/
B978012046371850016X

[105] Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying
proof methodologies to signature schemes. In: Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 2002, Proceedings, Lecture Notes in
Computer Science, vol. 2442, pp. 93–110. Springer (2002). DOI 10.1007/3-
540-45708-9_7. URL https://doi.org/10.1007/3-540-45708-9_7

[106] Team, T.M.: https://maude.cs.illinois.edu/wiki/The_Maude_System

[107] Team, T.T.: Tamarin Prover Manual. Available at https://tamarin-prover.com
/manual/

[108] Team, T.T.: Tamarin Prover source code. Available at https://github.com/tam
arin-prover/tamarin-prover

[109] Tree-sitter contributors: Tree-sitter. https://tree-sitter.github.io/tree-sitter/
[Online; accessed 24-February-2025]

[110] Vaudenay, S.: The security of DSA and ECDSA. In: Public Key Cryptography
- PKC 2003, 6th International Workshop on Theory and Practice in Public Key
Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, pp. 309–323
(2003). DOI 10.1007/3-540-36288-6_23. URL https://doi.org/10.1007/3-
540-36288-6_23

[111] Wesemeyer, S., Newton, C.J.P., Treharne, H., Chen, L., Sasse, R., Whitefield,
J.: Formal analysis and implementation of a TPM 2.0-based direct anonymous
attestation scheme. In: ASIA CCS ’20: The 15th ACM Asia Conference
on Computer and Communications Security, Taipei, Taiwan, October 5-9,
2020, pp. 784–798. ACM (2020). DOI 10.1145/3320269.3372197. URL
https://doi.org/10.1145/3320269.3372197

[112] Whitefield, J., Chen, L., Kargl, F., Paverd, A., Schneider, S.A., Treharne, H.,
Wesemeyer, S.: Formal analysis of V2X revocation protocols. In: Security and
Trust Management - 13th International Workshop, STM 2017, Oslo, Norway,
September 14-15, 2017, Proceedings, Lecture Notes in Computer Science, vol.
10547, pp. 147–163. Springer (2017). DOI 10.1007/978-3-319-68063-7_10.
URL https://doi.org/10.1007/978-3-319-68063-7_10

[113] Whitefield, J., Chen, L., Sasse, R., Schneider, S.A., Treharne, H., Wesemeyer, S.:
A Symbolic Analysis of ECC-Based Direct Anonymous Attestation. In: IEEE
European Symposium on Security and Privacy, EuroS&P 2019, Stockholm,
Sweden, June 17-19, 2019, pp. 127–141. IEEE (2019). DOI 10.1109/EuroSP
.2019.00019. URL https://doi.org/10.1109/EuroSP.2019.00019

[114] Wikipedia contributors: Extended backus–naur form — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Extended_Back

https://www.sciencedirect.com/science/article/pii/B978012046371850016X
https://www.sciencedirect.com/science/article/pii/B978012046371850016X
https://doi.org/10.1007/3-540-45708-9_7
https://maude.cs.illinois.edu/wiki/The_Maude_System
https://tamarin-prover.com/manual/
https://tamarin-prover.com/manual/
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover
https://tree-sitter.github.io/tree-sitter/
https://doi.org/10.1007/3-540-36288-6_23
https://doi.org/10.1007/3-540-36288-6_23
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.1007/978-3-319-68063-7_10
https://doi.org/10.1109/EuroSP.2019.00019
https://en.wikipedia.org/w/index.php?title=Extended_Backus%E2%80%93Naur_form&oldid=1276703454

288 REFERENCES

us%E2%80%93Naur_form&oldid=1276703454 (2025). [Online; accessed
24-February-2025]

[115] Yu, J., Ryan, M., Cremers, C.: DECIM: detecting endpoint compromise in
messaging. IEEE Trans. Inf. Forensics Secur. 13(1), 106–118 (2018)

https://en.wikipedia.org/w/index.php?title=Extended_Backus%E2%80%93Naur_form&oldid=1276703454
https://en.wikipedia.org/w/index.php?title=Extended_Backus%E2%80%93Naur_form&oldid=1276703454
https://en.wikipedia.org/w/index.php?title=Extended_Backus%E2%80%93Naur_form&oldid=1276703454

Part VII

Appendix

Chapter 19

Dependency Graph Examples

Below we provide the dependency graphs for the two attacks on the ISO-IEC
four pass authentication protocol, discussed in Section 2.2.5. When the Message
Sequence Charts (MSCs) for these attacks were presented, we had not yet provided
the background for readers to understand the corresponding dependency graphs. We
show the dependency graphs here and briefly comment on their relationships with
the corresponding MSCs.

The correspondence between the MSC in Figure 2.4 and the first dependency graph in
Figure 19.1 is as follows. The dependency graph presents strictly more information: it
represents not only the actions of the agents involved in the protocol, it also includes
detailed information on the adversary’s actions. This includes both the messages sent
by the adversary and also how the adversary derives the messages it sends. It also
makes explicit that all messages communicated between protocol participants go over
the adversary, i.e., participants do not communicate directly with each other as in the
MSC. Finally, the information given in the nodes of the dependency graph is partially
ordered, whereas the MSC totally orders the actions taken, which are the sending and
receiving of messages. For example, in our dependency graph the Setup rule and the
rule A1 can occur in any order. Note that, in the MSC, the setup of keys is implicit.

In the MSC, it is readily apparent what actions the participants in each role take,
namely constructing and communicating messages, and how the actions are ordered.
This ordering is determined simply by following the arrows denoting message
communication. The sending and receiving of message is also represented in the
dependency graph, where messages are sent (Out actions) and received (In actions)
and state facts (e.g., StA1 and StA2) are used to order when sending and receiving can
occur. This gives rise to a total ordering on the actions of any individual participant.
However, the actions of all participants and the adversary are still partially ordered
as some actions between participants or the adversary, can occur in parallel, as we
have seen. For example, the steps taken by agent $B playing in the role A are linearly
ordered as the application of A1 produces the state fact StA1, which is later consumed
and replaced with StA2 when the agent $B takes its second step. Between these steps

291

292 19 Dependency Graph Example

there is considerable parallelism possible, especially concerning the actions of the
adversary.

In(<t1, SE1>) StA2($B, $B, ~tnA, ~sesK)

#i : A3[Done($B, $B, ~sesK)]

SE1 = senc(<~tnA, $B, ~text5>, ~sesK)

SE2 = senc(<~tvpA, ~sesK, $B, ~text3>, ~kXT)

SE3 = senc(<~tnT, ~sesK, $B, ~text2>, ~kXT.1)

#vf : isend

#vk : coerce[!KU(SE2)]

#vf.1 : isend

#vl : irecv

#vr.4 : d_0_snd

In(<t1.1, SE2, t3>)
!SharedKey($B, 'T',
 ~kXT
)

StA1($B, ~tvpA) Fr(~text5) Fr(~text6) Fr(~tnA)

#vr : A2[ALearns($B, $B, ~sesK)]

Out(<~text6, t3, SE1>) StA2($B, $B, ~tnA, ~sesK)

#vl.1 : irecv

#vk.1 : coerce[!KU(SE1)]

#vr.7 : d_0_snd

Fr(~kXT)

#vr.1 : Setup

!SharedKey($B, 'T', ~kXT)

In(<~tvpA, $B, txt1
 >
)

!SharedKey($B, 'T',
 ~kXT
)

!SharedKey($B, 'T',
 ~kXT.1
)

Fr(~text2) Fr(~text3) Fr(~text4) Fr(~sesK) Fr(~tnT)

#vr.3 : T[Sent($B, $B, ~sesK)]

Out(<~text4, SE2, SE3>)

#vk.2 : coerce[!KU(~tvpA)]

#vf.8 : isend

Fr(~tvpA) Fr(~text1)

#vr.2 : A1

Out(<~tvpA, $B, ~text1>) StA1($B, ~tvpA)

#vr.5 : d_0_fst

#vr.8 : d_0_snd

!KU(t1) @ #vk.6

!KU(t1.1) @ #vk.7 !KU(t3) @ #vk.8

!KU(txt1) @ #vk.12

Fig. 19.1: Dependency Graph for Attack on AauthenticatesB

The reader may work out the relationship between the MSC in Figure 2.5 and the
corresponding dependency graph in Figure 19.2 in a similar way.

19 Dependency Graph Example 293

In(<t1, SE2, SE3>)
!SharedKey($X.1, 'T', ~kXT
)

Fr(~text7.1) Fr(~text8) Fr(~tnB.1)

#i : B[BLearns($X, $X.1, ~sesK)]

Out(<~text8, senc(<~tnB.1, $X, ~text7.1>, ~sesK)>)

SE1 = senc(<~tnT, ~sesK, $X.1, ~text2>, ~kXT.1)

SE2 = senc(<~tvpA, ~sesK, $X, ~text3>, ~kXT)

SE3 = senc(<~tnB, $X.1, ~text7>, ~sesK)

SE4 = senc(<~tnA, $X, ~text5>, ~sesK)

#vf : isend

#vk : coerce[!KU(SE2)]

#vf.16 : isend

#vl : irecv

#vr.2 : d_0_snd

Fr(~kXT)

#vr : Setup

!SharedKey($X.1, 'T', ~kXT)

In(<~tvpA, $X, txt1
 >
)

!SharedKey($X.1,
 'T', ~kXT
)

!SharedKey($X, 'T',
 ~kXT.1
)

Fr(~text2) Fr(~text3) Fr(~text4) Fr(~sesK) Fr(~tnT)

#vr.1 : T[Sent($X.1, $X, ~sesK)]

Out(<~text4, SE2, SE1>)

In(<t1.2, SE2, t3>)
!SharedKey($X.1, 'T',
 ~kXT
)

StA1($X, ~tvpA) Fr(~text5) Fr(~text6) Fr(~tnA)

#vr.8 : A2[ALearns($X.1, $X, ~sesK)]

Out(<~text6, t3, SE4>) StA2($X.1, $X, ~tnA, ~sesK)

#vk.1 : coerce[!KU(SE3)]

#vl.1 : irecv

#vr.6 : d_0_snd

#vk.2 : coerce[!KU(SE1)]

#vf.12 : isend

#vl.2 : irecv

#vr.9 : d_0_snd

#vr.3 : d_0_fst #vr.7 : d_0_snd

#vk.3 : coerce[!KU(SE4)]

#vk.4 : coerce[!KU(~tvpA)]

#vf.5 : isend

Fr(~kXT.1)

#vr.4 : Setup

!SharedKey($X, 'T', ~kXT.1)

In(<t1.1, SE1, SE4>)
!SharedKey($X, 'T', ~kXT.1
)

Fr(~text7) Fr(~text8.1) Fr(~tnB)

#vr.5 : B[BLearns($X.1, $X, ~sesK)]

Out(<~text8.1, SE3>)

#vr.10 : d_0_snd

Fr(~tvpA) Fr(~text1)

#vr.11 : A1

Out(<~tvpA, $X, ~text1>) StA1($X, ~tvpA)

!KU(t1) @ #vk.11

!KU(txt1) @ #vk.15

!KU(t1.1) @ #vk.16

!KU(t1.2) @ #vk.17 !KU(t3) @ #vk.18

Fig. 19.2: Dependency Graph for Attack on AauthenticatesB

Chapter 20

Syntax

In this chapter, we provide an overview of Tamarin’s syntax in EBNF [114] notation.
Our definition only covers the syntactic elements described in this book. It does
not include, for example, the syntax for Tamarin’s SAPIC extension for process
specifications. A complete, up-to-date syntax specification may be found in Tamarin’s
manual [107]. In the Tamarin source code repository [108] we provide the syntax
files for the tree-sitter parser generator tool [109], which were used to generate
the EBNF definition in the manual and can also be used to develop other parsers and
tools for Tamarin files.

Comments in Tamarin’s input language use conventions similar to the C language.
/* for a comment running over multiple lines */
// for a single line comment

All security protocol theories are named and delimited by begin and end. We explain
the non-terminals used to define the command-line configuration and body items in
the subsequent paragraphs.

theory ::= 'theory' (ident)
('configuration' ':' '"' commandline '"')?
'begin' _body_item* 'end'

_body_item ::= preprocessor
| _signature_spec
| global_heuristic
| tactic
| _rule
| restriction
| _lemma
| formal_comment

commandline ::= ('--auto-sources'
| ('--stop-on-trace' '=' _search_strategy))+

_search_strategy ::= 'BFS'
| 'DFS'
| 'SEQDFS'
| 'NONE'

295

296 20 Syntax

The purpose of --auto-sources is explained in Section 8.3. The --stop-on-trace
options are explained in Section 6.1.2.

The preprocessor allows conditional blocks, including external files, and the definition
of macros.

preprocessor ::= ifdef
| define
| include

ifdef ::= '#ifdef' _ifdef_formula _body_item*
('#else' _body_item*)?
'#endif'

define ::= '#define' ident
include ::= '#include' '"' (param) '"'
_ifdef_formula ::= ifdef_nested

| ifdef_or
| ifdef_and
| ifdef_not
| ident

param ::= /[^"]*/
ifdef_nested ::= '(' _ifdef_formula ')'
ifdef_or ::= _ifdef_formula '|' _ifdef_formula
ifdef_and ::= _ifdef_formula '&' _ifdef_formula
ifdef_not ::= 'not' _ifdef_formula

Conditional blocks and the inclusion of external files are described in Section 10.2.3.

Tamarin’s syntax has the following three reserved keywords: let, in, and rule.

Identifiers always start with a letter or number, and may contain underscores after the
first character. Although identifiers beginning with a number are valid, they are not
allowed as the names of facts, which must begin with an upper-case letter.

ident ::= /[A-Za-z0-9]\w*/

Additionally, identifiers may not be one of three reserved keywords listed above.

Naturals are sequences of digits.
natural ::= /[0-9]+/

We next turn to the syntax definitions of equational theories, function symbol
definitions, and predicates.

_signature_spec ::= built_ins | functions | equations | predicates | macros

Function definitions are given using the following syntax.
functions ::= ('functions' ':'

_function_sym (',' _function_sym)* ','?)
_function_sym ::= (ident) '/' (natural)

('[' function_attribute
(',' function_attribute)*

','? ']')?
function_attribute ::= 'private'

For equations, the syntax is:

20 Syntax 297

equations ::= ('equations' ('[' 'convergent' ']') ':'
equation (',' equation)* ','?)

equation ::= (mset_term: left) '=' (mset_term: right)

Note that the defined equations must be convergent, have the Finite Variant Property
(FVP, Section 6.7), and not use fixed public constants in the terms. Tamarin
provides built-in sets of function definitions and equations. They are expanded
upon parsing; one may therefore inspect them by pretty printing the file using
tamarin-prover your-file.spthy.

macros ::= 'macros' ':' macro (',' macro)*
macro ::= (ident)

'(' (_non_temporal_var (',' _non_temporal_var)*)? ')'
'=' (mset_term)

Macros are described in Section 10.2.2.
predicates ::= ('predicate' | 'predicates') ':'

predicate (',' predicate)*
predicate ::= (predicate_def) '<=>' (_formula)
predicate_def ::= (ident) '(' arguments? ')'

Predicates are described in Section 5.10.1.
built_ins ::= 'builtins' ':' built_in (',' built_in)* ','?
built_in ::= 'diffie-hellman'

| 'hashing'
| 'symmetric-encryption'
| 'asymmetric-encryption'
| 'signing'
| 'bilinear-pairing'
| 'xor'
| 'multiset'
| 'natural-numbers'
| 'revealing-signing'

The purpose of these builtins is described in Chapter 7, with further pointers provided
in Table 7.1.

A global heuristic sets the default heuristic that will be used when proving lemmas.
The specified goal ranking can be any of those discussed Section 6.6.

global_heuristic ::= 'heuristic' ':'
(_proof_method_ranking+)

_proof_method_ranking ::= standard_proof_method_ranking
| oracle_proof_method_ranking
| tactic_proof_method_ranking

standard_proof_method_ranking ::= /[CIScis]+/
oracle_proof_method_ranking ::= ('O' | 'o') ('"' param '"')?
tactic_proof_method_ranking ::= '{' ident '}'

We describe oracles in Section 16.4.
tactic ::= 'tactic' ':' ident presort?

((prio+ deprio*) | (prio* deprio+))
presort ::= 'presort' ':' standard_proof_method_ranking
prio ::= 'prio' ':' ('{' post_ranking '}')? _tactic_formula+
deprio ::= 'deprio' ':' ('{' post_ranking '}')? _tactic_formula+

298 20 Syntax

post_ranking ::= 'smallest' | 'id'

_tactic_formula ::= or_tacfor
| and_tacfor
| not_tacfor
| atomic_tacfor

or_tacfor ::= _tactic_formula '|' _tactic_formula
and_tacfor ::= _tactic_formula '&' _tactic_formula
not_tacfor ::= 'not' _tactic_formula
atomic_tacfor ::= tacfor_name ('"' param '"')*
tacfor_name ::= 'regex'

| 'isFactName'

Tactics are described in Section 16.3.

Multiset rewriting rules are specified using the rule syntax given below. The protocol
defined by a security protocol theory is given by the set of all multiset rewriting
rules specified in the theory’s body. The input language also supports some advanced
features. For example, rule variants can be explicitly given. Furthermore, when the
diff-mode is used to check for observational equivalence (Chapter 13), the left and
right instances of a rule can be specified: when Tamarin is called with --diff, it
will accept diff_rule in addition to rule).

_rule ::= rule
| diff_rule

rule ::= simple_rule variants?
diff_rule ::= simple_rule 'left' (rule) 'right' (rule)
simple_rule ::= 'rule' modulo? (ident) rule_attrs? ':'

rule_let_block?
premise ('-->' | action_fact) conclusion

premise ::= '[' _facts? ']'
action_fact ::= '--[' _facts_or_restrictions? ']->'
conclusion ::= '[' _facts? ']'
variants ::= 'variants' simple_rule (',' simple_rule)*
modulo ::= '(' 'modulo' ('E' | 'AC') ')'
rule_attrs ::= '[' rule_attr (',' rule_attr)* ','? ']'
rule_attr ::= rule_attr_color

| rule_role
| 'no_derivcheck'

rule_attr_color ::= ('color=' | 'colour=') hexcolor
hexcolor ::= (''' ('#')? (/[0-9a-fA-F]{1,6}/) ''')

| (('#')? (/[0-9a-fA-F]{1,6}/))
rule_role ::= 'role' '=' '"' (ident: role_identifier) '"'

_facts_or_restrictions ::= (_fact | embedded_restriction)
(',' (_fact | embedded_restriction))*

Rule variants, as well as left and right instances, are not intended to be specified by
users. Instead, they are internally computed and output by Tamarin when exporting
a proof or parsed protocol specification. The color and role attributes are described
in Section 6.5.

rule_let_block ::= 'let' rule_let_term+ 'in'
rule_let_term ::= (msg_var_or_nullary_fun | nat_var) '='

(mset_term)

20 Syntax 299

The let-block allows more succinct specifications. The equations are applied in a
bottom-up fashion. For example,

let x = y
y = <z,x>

in [] --> [A(y)]

is internally translated to
[] --> [A(<z,y>)]

For details of the definition of let-blocks, see Section 10.2.1. In general, it is good
form to keep the set of variables on the left-hand side separate from the free variables
on the right-hand side to avoid confusion.

embedded_restriction ::= '_restrict' '(' (_formula) ')'

Restrictions specify restrictions on the set of traces considered as described in
Section 5.10.2. The formula specifying a restriction is available as an assumption
in the proofs of all security properties specified in the security protocol theory.
Restrictions can be either specified at the global level, or inside of specific rules as
embedded restrictions Section 5.10.3.

restriction ::= 'restriction' (ident)
restriction_attr?
':' '"' (_formula) '"'

In observational equivalence mode, restrictions can be associated to one side.
restriction_attr ::= '[' ('left' | 'right') ']'

Lemmas specify security properties. By default, the given formula is interpreted as a
property that must hold for all traces of the protocol specified by the security protocol
theory. One can change this using the exists-trace trace quantifier.

_lemma ::= lemma
| diff_lemma

lemma ::= 'lemma' modulo? (ident)
diff_lemma_attrs?
':' trace_quantifier? '"' (_formula) '"'
(_proof_skeleton)?

lemma_attr ::= 'sources'
| 'reuse'
| 'use_induction'
| ('hide_lemma=' ident)
| ('heuristic=' (_proof_method_ranking+: proof_method_ranking))

trace_quantifier ::= 'all-traces'
| 'exists-trace'

diff_lemma ::= 'diffLemma' modulo? (ident)
diff_lemma_attrs?
':' (_proof_skeleton)?

diff_lemma_attrs ::= '[' (diff_lemma_attr | lemma_attr)
(',' (diff_lemma_attr | lemma_attr))* ','? ']'

diff_lemma_attr ::= 'left'
| 'right'

300 20 Syntax

In observational equivalence mode, described in Chapter 13, lemmas can be associated
to one side. For the two versions of the theory, called the left and the right theory
(which defines which term is used from all diff occurrences), each lemma can be
considered on either or on both sides, depending on the left or right annotation
on the lemma.

A proof skeleton is a complete or partial proof as output by Tamarin. It indicates the
proof method used at each step.

_proof_skeleton ::= solved
| mirrored
| by_method
| method_skeleton
| cases

solved ::= 'SOLVED'
mirrored ::= 'MIRRORED'
by_method ::= 'by' _proof_methods
method_skeleton ::= _proof_methods (_proof_skeleton)
cases ::= case ('next' case)* 'qed'
case ::= 'case' (ident)

(_proof_skeleton)
_proof_methods ::= (proof_method | step+)
proof_method ::= 'sorry'

| 'simplify'
| ('solve' '(' constraint ')')
| 'contradiction'
| 'induction'
| 'rule-equivalence'
| 'backward-search'
| 'ATTACK'

step ::= 'step' '(' proof_method ')'

constraint ::= premise_constraint
| action_constraint
| chain_constraint
| eq_split_constraint
| disjunction_split_constraint

premise_constraint ::= _fact '▶' natural_subscript temporal_var
natural_subscript ::= ('0 ' | '1 ' | '2 ' | '3 ' | '4 '

| '5 ' | '6 ' | '7 ' | '8 ' | '9 ')+
action_constraint ::= (_fact) '@'

((temporal_var_optional_prefix)
variable)

chain_constraint ::= '(' temporal_var ',' natural ')' '~~>'
'(' temporal_var ',' natural ')'

eq_split_constraint ::= 'splitEqs' '(' natural ')'
disjunction_split_constraint ::= (_formula) (('||' | '∥') (_formula))+

Formal comments may be used to provide explanation and context for models. In
contrast to comments of the form /*...*/ and //..., formal comments are stored
and output again when pretty-printing a security protocol theory.

formal_comment ::= (ident) ('{*' /[^*]**+([^}*][^*]**+)*/ '}')

We next turn to terms, as described in Section 3.1.2. When specifying terms, a
common pitfall is the use of an undefined function symbol. This results in an error

20 Syntax 301

message pointing to a position slightly before the actual use of the function, due to
grammar ambiguities.

We provide special syntax for tuples, multisets, xor, multiplication, exponentiation,
and nullary and binary function symbols. An n-ary tuple <t1,...,tn> is parsed as
an n-ary, right-associative application of pairing. Multiplication and exponentiation
are parsed left-associatively. For the binary operator enc, one can write enc{m}k or
enc(m,k). For nullary function symbols, there is no need to write nullary(), i.e.,
the brackets are optional. Note that the number of arguments of an n-ary function
application must agree with the arity given in the function definition.

_term ::= tuple_term
| nested_term
| nullary_fun
| binary_app
| nary_app
| _literal

tuple_term ::= '<' (mset_term: left) (',' (mset_term: right))* '>'
mset_term ::= (nat_term) (('++' | '+') (nat_term))*
nat_term ::= (xor_term) ('%+' (xor_term))*
xor_term ::= (mul_term)

(('XOR' | '⊕') (mul_term))*
mul_term ::= (exp_term) ('*' (exp_term))*
exp_term ::= (_term) ('^' (_term))*

nested_term ::= '(' mset_term ')'
nullary_fun ::= (ident)

| ((ident) '(' ')')
binary_app ::= (ident)

'{' (arguments) '}'
(mset_term)

nary_app ::= (ident) '(' arguments ')'
arguments ::= ((mset_term | temporal_var): argument)

(',' (mset_term))*
_literal ::= pub_name

| fresh_name
| _non_temporal_var

_non_temporal_var ::= pub_var
| fresh_var
| msg_var_or_nullary_fun
| nat_var

pub_var ::= ('$' (ident) ('.' natural)?)
| ((ident) ('.' natural)? ':' 'pub')

fresh_var ::= ('~' (ident) ('.' natural)?)
| ((ident) ('.' natural)? ':' 'fresh')

msg_var_or_nullary_fun ::= (ident) ('.' natural)? (':' 'msg')?

temporal_var ::= ('#' (ident) ('.' natural)?)
| ((ident) ('.' natural)? ':' 'node')

nat_var ::= ('%' (ident) ('.' natural)? (':' 'nat')?)
| ((ident) ('.' natural)? ':' 'nat')

pub_name ::= ''' /[^\n']+/ '''
fresh_name ::= '~'' /[^\n']+/ '''

302 20 Syntax

temporal_var_optional_prefix ::= ('#'? (ident) ('.' natural)?)
| ((ident) ('.' natural)? ':' 'temporal')

Facts are described in Section 3.1.5. The main reserved fact symbols are: In, Out,
K, and _restrict. In and Out occur in left-hand and right-hand sides of rules and
encode the built-in interface between the rules and the adversary-controlled network.
K is used in property specifications to test whether the adversary can derive a specific
term. In the context of a rule’s action facts, _restrict is a reserved unary fact
symbol that is used to specify rule-specific restrictions (see Section 5.10.3).

Furthermore, there are two facts internal to Tamarin’s search algorithm: KU and KD.
These two facts are used internally by Tamarin for the construction and deconstruction
rules. KU-facts also log the messages deduced by construction rules.

_facts ::= (_fact (',' _fact)*)
_fact ::= (fact)

| ('!' (fact))
fact ::= ((ident) '(' arguments? ')' fact_annotes?)
fact_annotes ::= '[' fact_annote (',' fact_annote)* ']'
fact_annote ::= '+'

| '-'
| 'no_precomp'

Fact annotations can be used to change the priority of the corresponding goals in
heuristics, or influence the precomputation step performed by Tamarin, as described
in Section 16.2.

Formulas are trace formulas as described in Chapter 5. Note that the language is
slightly more liberal with respect to guardedness (Section 11.5), as it accepts a
conjunction of atoms as guards.

_formula ::= quantified_formula
| nested_formula
| iff
| imp
| disjunction
| conjunction
| negation
| _temporal_variable_operation
| action_constraint
| term_eq
| subterm_rel
| atom
| predicate_ref
| pre_defined

quantified_formula ::= ('Ex' | '∃' | 'All' | '∀') (_lvar+) '.' (_formula)
nested_formula ::= '(' _formula ')'

iff ::= (_formula) ('<=>' | '⇔') (_formula)
imp ::= (_formula) ('==>' | '⇒') (_formula)
disjunction ::= (_formula) ('|' | '∨') (_formula)
conjunction ::= (_formula) ('&' | '∧') (_formula)
negation ::= ('not' | '¬') (_formula)

20 Syntax 303

_temporal_variable_operation ::= temp_var_induction
| temp_var_order
| temp_var_eq

temp_var_induction ::= 'last' '(' temporal_var ')'
temp_var_order ::= (temporal_var_optional_prefix)

'<' (temporal_var_optional_prefix)
temp_var_eq ::= (temporal_var_optional_prefix)

'=' (temporal_var_optional_prefix)

term_eq ::= (mset_term: left) '=' (mset_term)
subterm_rel ::= (mset_term: left) ('<<' | '⊏') (mset_term)
atom ::= '⊥' | 'F' | '⊤' | 'T'
predicate_ref ::= (ident) '(' arguments? ')'
pre_defined ::= ident
_lvar ::= temporal_var

| _non_temporal_var

Chapter 21

Exercises

In this section, we present exercises that aim at improving the reader’s practical
understanding of the topics explained in this book. These exercises can be used as part
of a tutorial or course where participants work, hands on, with Tamarin. We have
taken these exercises from different workshops and courses developed by ourselves
and colleagues, with their permission. In particular, we thank Véronique Cortier,
Alexander Dax, Sofia Giampietro, Xenia Hofmeier, Aurora Naska, Saša Radomirović,
and Christoph Sprenger for their contributions here.

We will include solutions to selected exercises in Section 21.3.

21.1 Simple Protocols

We start with examples of smaller protocols, which we iteratively build in small steps.
Later tasks will be more substantial. The project in Section 21.2 is even larger and
leaves considerable flexibility to the reader.

21.1.1 Client-Server Key Transmission

We start with a simple one-message protocol where a client 𝐶 sends a fresh key 𝑘 to
a server 𝑆, for which the client knows the public key.

1. 𝐶 → 𝑆 : {𝑘}𝑝𝑢𝑏𝑆

We consider the following subtasks, and make available the file exer-
cises/ClientServer.spthy as a starting point.

1. Read the file and try to understand the protocol and how it is modeled.

305

306 21 Exercises

2. Load the file in Tamarin’s interactive mode and study and prove all the stated
properties. Which properties are analyzed, and what results do you obtain? What
is the purpose of the lemma Client_Server_can_finish?

3. Prove the secrecy of the session key from the server’s point of view. To do this,
add the necessary annotations and lemma to the source file. What result do you
obtain?

4. Allow for corruption by uncommenting the Reveal_ltk rule. Check all lemmas
again. Which results change and why? Modify the lemmas so that they make sense
again.

5. Currently the client does not know whether the server actually received his message
and key. To allow the server to confirm the key’s receipt, add a return message:

2. 𝑆 → 𝐶 : ℎ(𝑘)

where ℎ(𝑘) is the hash of the key received in the first message.

Hint: Include the builtin hashing, and modify the server and client rules.

6. Bonus: Can you now prove key confirmation from the client’s point of view?

You can find the solutions to these subtasks in Section 21.3.1.

21.1.2 Needham-Schroeder Protocol

We consider a variant of the well-known Needham-Schroeder protocol and its
correction proposed by Lowe. The protocol is found in the file exercises/needham-
schroeder.spthy.

1. Load this file in Tamarin’s interactive mode and prove all the given properties.
We suggest running Tamarin using --auto-sources to avoid termination issues.
Which lemmas are proven and which fail? Does Tamarin find Lowe’s attack? Can
you help Tamarin find that attack? Hint: look at the lemma’s source code.

2. Read and understand the Tamarin file. Modify it by applying Lowe’s fix by adding
"B"’s identity to the second message. What do you now observe? Do all properties
hold?

You can find the solutions in Section 21.3.2.

21.1.3 Aliveness and Agreement - Separating Examples

Consider the following three simple protocols H1, H2, and H3:

21.1 Simple Protocols 307

H1(1). 𝐼 → 𝑅 : {𝐼, 𝑅}sk(𝐼)
H1(2). 𝑅 → 𝐼 : {𝐼, 𝑅}sk(𝑅)

H2(1). 𝐼 → 𝑅 : {𝐼, 𝑅}sk(𝐼)
H2(2). 𝑅 → 𝐼 : {𝐼}sk(𝑅)

H3(1). 𝐼 → 𝑅 : Ni, {𝐼, 𝑅}sk(𝐼)
H3(2). 𝑅 → 𝐼 : {𝐼,Ni}sk(𝑅)

Recall Lowe’s hierarchy of authentication properties (in increasing strength): aliveness,
weak agreement, non-injective agreement, and injective agreement. For each of the
three protocols above:

• Determine the strongest property in Lowe’s hierarchy that holds for 𝐼 authenticating
𝑅 and give an informal argument why it holds.

• Suggest an attack on the next stronger property (if any) showing that it fails to
hold.

• Check your answers in Tamarin.

Hint: For H3, include the nonce Ni in the agreement if possible.

You can find the solutions in Section 21.3.3.

21.1.4 Two message key exchange protocol (2MKEP)

We shall now model a two message key exchange protocol. We construct it in three
steps with increasing complexity, using different abstractions, different security
properties, and different adversary models.

21.1.4.1 2MKEP: start

We start by considering a very simple protocol: an initiator and a responder want to
exchange secretly two random numbers, respectively mI and mR. For this, we assume
that the initiator and responder already have a shared fresh symmetric secret key.
Hence they can simply send each other encrypted messages, see Figure 21.1.

Using the skeleton file exercises/2mkep-v1.spthy and the following hints, model this
protocol.

• Use Tamarin’s rewrite rules to model the setup of the shared symmetric key
between initiator and responder. We do not allow either party to get compromised
and reveal the key.

308 21 Exercises

Initiator

knows KIR

Responder

knows KIR

fresh mI fresh mR

senc(mI ,KIR)

senc(mR ,KIR)

Fig. 21.1: 2MKEP: exchanging nonces with a pre-existing shared key

• Use Tamarin’s built-in symmetric-encryption theory for the encryption
function, see Chapter 7. The given skeleton file already includes this built-in
theory.

Write an executability lemma.

To ensure that your model behaves as expected, always write lemmas that guarantee
that the parties executing the protocol can actually complete all their steps. This helps
you detect typos and modeling errors, which may make some of the rewriting rules
that model the protocol impossible to execute.

The skeleton file already includes such a lemma, lemma executable. This states
that the initiator can finish her run of the protocol, sending the message mI and
receiving the message mR from the responder, and the responder can finish his run,
sending the message mR and receiving mI from the initiator. However, you must add
the necessary action facts to the rules you write.

• Add the action facts FinishedI(..), for the initiator, and FinishedR(..), for
the responder, to your model. In which rules should they be added?

• Once you have implemented the model and added the necessary action facts, load
Tamarin’s interactive mode and verify your executability lemma.

• Tamarin gives you a graphical output when it finds an execution. Try relating this
graph to your model. Can you make sense of it?

Security Properties: Secrecy

The protocol should guarantee that no party other than the initiator and responder
can obtain mI or mR.

• Thinking along the lines of the secrecy lemma in Section 5.3, add the following
two action facts to the appropriate rules:

21.1 Simple Protocols 309

– SecretI($I, $R, mI): Indicates that at this point the initiator (agent $I)
believes mI to be a secret shared between her and the responder (agent $R).

– SecretR($R, $I, mR): Indicates that at this point the responder (agent $R)
believes mR to be a secret shared between him and the initiator (agent $I).

• Write a lemma lemma secrecyI stating that when the initiator finishes her role,
exchanging a message mI (apparently) with the responder, then the message is a
secret. Namely, it is only known by the initiator and responder, but not by any
other agents, in particular not by the adversary.

• Write an analogous lemma secrecyR, referring to the message mR sent by the
responder at the end of his role.

Once you have written these lemmas, load Tamarin’s interactive mode and verify
both lemmas. Do they hold? What would you expect?

21.1.4.2 2MKEP: Public Key Infrastructure

In the previous task, we abstracted away (via a rule) how initiator and responder come
to initially share a symmetric key. In reality, this is a crucial problem to solve. In this
task, our solution is to assume that a public key infrastructure (PKI) is available.

We consider the straightforward idea where the initiator chooses a symmetric key
𝐾𝐼𝑅 and sends it to the responder, encrypting it with the responder’s public key.
See Figure 21.2.

Initiator

knows Responder’s public key pkR
Responder

knows skR and pkR = pk(skR)

fresh KIR

fresh mI
I , aenc(KIR , pkR), senc(mR ,KIR)

fresh mR

senc(mR ,KIR)

Fig. 21.2: 2MKEP: exchanging nonces using the PKI and a session key

We will make use of asymmetric-encryption, a built-in Tamarin theory that
models a public key encryption scheme, which we saw in Chapter 7. Using the
skeleton file exercises/2mkep-v2.spthy and the hints below, model this version of the
protocol.

• To use asymmetric cryptography, protocol agents must generate key pairs. Write a
rule that allows an agent to generate a private/public key pair. For now, we do not
allow agents to get compromised and reveal their secret keys.

310 21 Exercises

• Model the rest of the protocol.

• Write an executability lemma to verify that your model is actually executable.
For this, add suitable action facts and check that Tamarin returns the expected
protocol run, examining the resulting graph in interactive mode.

Security Properties: Secrecy

As in the previous task, this protocol should guarantee that no party other than the
initiator and the responder can obtain mI or mR.

• Again, add the following two action facts to the appropriate rules:

– SecretI($I, $R, mI): Indicates that at this point the initiator (agent $I)
believes mI to be a secret shared between her and the responder (agent $R).

– SecretR($R, $I, mR): Indicates that at this point the responder (agent $R)
believes mR to be a secret shared between him and the initiator (agent $I).

• Write lemmas lemma secrecyI and lemma secrecyR checking the secrecy of
the terms mI and mR. You may of course re-use the lemmas from the previous
exercise.

Analyze both lemmas. This time, results should be different! While Tamarin should
still verify secrecyI, it should now falsify secrecyR.

Try to understand the attack graph Tamarin produces. What happens if you do not
make the agents’ public keys available to the adversary in your PKI infrastructure
rule? Verify that in that case Tamarin proves both lemmas. Is it realistic to model a
PKI that way?

Consider the differences

How do the results compare between these two exercises? Think about what has
changed. One can of course further increase the level of detail of the model: for
example, concretely modeling how the asymmetric encryption or the symmetric
encryption is performed. Many things could go wrong there, too. In general, when
modeling a protocol, choosing the right level of abstraction is hard, and this usually
depends on whether or not you are interested in the details of its sub-protocols.

21.1.4.3 2MKEP: now with possible key leakage

The protocol in the previous task did not achieve the intended security properties.
In particular, the responder had no guarantee that the initiator actually sent him the
message. To fix this, we modify the protocol so that additionally the initiator signs

21.1 Simple Protocols 311

the message she sends, see Figure 21.3. Tamarin has a built-in theory signing to
model signature schemes, see Chapter 7.

Initiator

knows skI and responder’s public key pkR
Responder

knows skR and initiator’s public key pkI

fresh KIR

fresh mI
I , aenc(KIR , pkR), senc(⟨mI , sign(mI , skI)⟩,KIR)

fresh mR

verify signature
senc(mR ,KIR)

Fig. 21.3: 2MKEP: exchanging nonces using a PKI, session key, and signing

• Modify your previous model to include the initiator’s signature.

• Check your executability lemma’s resulting graph.

• Analyze both secrecy lemmas. This time Tamarin should verify secrecyI and
secrecyR. Check that it does!

Leaking Keys

If you think carefully, the verification results are surprising. The protocol should be
vulnerable to a man-in-the-middle attack that compromises the secrecy of mR. Why
does Tamarin fail to find it?

Recall that while the adversary can use all the loaded function symbols (in this case
senc, sdec, aenc, adec, sign, etc.), it cannot execute rules for its own benefit. In
particular, the adversary cannot generate a private/public key pair using our PKI
rule, and hence it cannot act as an agent. This is actually quite a restrictive adversary
model, which we will now change.

• To fix this, write a rule that allows an agent to be compromised: the rule should
take an agent’s secret key and send it out on the network. In this way an adversary
can use this key, acting like that agent afterwards.

• Analyze the secrecy lemmas. Tamarin should now disprove both of them. Examine
the attack graphs. They will probably show either the initiator or responder
themselves leaking a key. This is not a real or sensible attack: of course the
messages mI and mR will not be secret if either the initiator or responder themselves
are compromised by the adversary. What we want to check, however, is that the
messages mI and mR remain secret if both the initiator and responder are honest,
but all other agents may be compromised.

312 21 Exercises

• In the rule that reveals an agent’s secret key, add an action fact (e.g.,
Compromised(..)) that documents that a certain agent has been compromised.
Fix your lemmas SecretI and SecretR to exclude the case of the initiator and
responder themselves being compromised.

• Run Tamarin again in interactive mode. Does it now find the expected man-in-
the-middle-attack?

• Observe how the reveal of keys has affected your executability lemma. Does the
graph returned by Tamarin still correspond to the standard protocol run that you
would expect? If not, modify your executability lemma to exclude agents from
being compromised. You should always check that your protocol is executable if
everyone is honest, i.e., protocol executability should not require the adversary’s
help.

This concludes the 2MKEP example, for which we do not provide solutions.

21.2 A Large Protocol: PACE

We now present a task from a larger protocol project. In this task, we leave readers the
freedom to design their own models from a blank canvas, i.e., no files are provided.
Moreover, no solutions are given.

The PACE protocol is part of a protocol suite that is used for machine-readable travel
documents throughout the world. These documents include electronic passports and
identity cards. The PACE protocol establishes a secure channel between the terminal
and the RFID chip on the passport or ID card. The protocol assumes that they initially
only share a low-entropy secret and it uses a Diffie-Hellman key exchange to derive
a strong session key. In practice, the low-entropy pre-shared secret may be either
from a six-digit Card Access Number (CAN) or the Machine-Readable Zone (MRZ),
which is a code printed on the document and optically scanned by the terminal.

In this part of the project, we develop the PACE protocol by a series of successive
refinements. We start with a very simple challenge-response protocol for which we
show an agreement property. With each refinement, we introduce additional features
and possibly additional or stronger security properties. Our goal is to derive PACE
and prove that it satisfies perfect forward secrecy for its session key as well as mutual
agreement of the parties on the session key and other protocol elements.

21.2.1 A simple challenge-response protocol

Our initial protocol is the following simple MAC-based challenge response protocol
P1 between an initiator 𝐼 and a responder 𝑅.

21.2 A Large Protocol: PACE 313

𝐼 → 𝑅 : 𝑥
𝑅 → 𝐼 : [𝑥]k(𝑅,𝐼)

In this protocol, 𝑥 is a nonce generated by 𝐼, [𝑀]𝐾 denotes the MAC of message 𝑀
with key 𝐾 , and k(𝑅, 𝐼) is a symmetric long-term key shared by 𝑅 and 𝐼. Make sure
that the key k(𝑅, 𝐼) is uni-directional, i.e., k(𝐼, 𝑅) ≠ k(𝑅, 𝐼), meaning you do not use
the same key when 𝐼 sends to 𝑅 as when 𝑅 sends to 𝐼. Instead, there are two different
keys, one for each direction.

Formalize this protocol in Tamarin and prove that it satisfies the authentication
property that 𝐼 injectively agrees with 𝑅 on the nonce 𝑥. Make sure that the intruder
can also act as a regular protocol participant. This is theory P1.

21.2.2 Mutual authentication

The first refinement, protocol P2, combines two instances of P1, one initiated by 𝐼
(generating and sending nonce 𝑥) and one initiated by 𝑅 (generating and sending
nonce 𝑦). These two instances are run in an interleaved manner such that the senders
alternate and the resulting protocol has four messages. The property we wish to
achieve is the agreement of each role with the other role on both nonces 𝑥 and 𝑦.

1. Model the protocol P2 and analyze its desired security property in Tamarin as
the theory P2a. Can you find an attack?

2. If you have found an attack: describe the problem, propose a fix as the theory P2b,
and try to prove the mutual injective agreement property. Iterate as needed until
you succeed with a proof.

21.2.3 Introducing a session key

In the second refinement, we introduce a session key and a corresponding secrecy
property. Instead of using the long-term key k(𝐼, 𝑅) for computing MACs, we compute
MACs in both directions with the session key Kir, which is derived from the long-term
key and the nonces 𝑥 and 𝑦 using a key derivation function kdf:

Kir = kdf (k(𝐼, 𝑅), 𝑥, 𝑦)

At the same time, instead of computing the MACs of both nonces, we only MAC the
other role’s nonce (i.e., 𝐼 computes the MAC of 𝑦 and 𝑅 computes the MAC of 𝑥).

1. Define the modified protocol in Tamarin as the theory P3a and prove mutual
agreement on 𝑥, 𝑦, and Kir as well as the secrecy of Kir. Note that you can declare
the function kdf as a user-defined function in Tamarin.

314 21 Exercises

2. Give an informal justification of why we can include each role’s own nonce in the
agreement despite that nonce not being MACed. Compare with protocol P2.

21.2.4 Replace the password by a nonce

In this refinement, we replace the (low-entropy) password k(𝐼, 𝑅) in the session key
Kir by a (high-entropy) nonce 𝑠 generated by 𝐼, i.e.,

Kir = kdf (𝑠, 𝑥, 𝑦).

Moreover, we add the symmetric encryption of 𝑠 with the hashed password h(k(𝐼, 𝑅))
as a second (plaintext) component to the first message from 𝐼 to 𝑅. We call this
protocol P4.

Model the protocol P4 in Tamarin as the theory P4 and show that it satisfies the
same properties as the protocol P3.

21.2.5 Introducing Diffie-Hellman: The PACE protocol

In the final refinement, protocol P5, we derive the PACE protocol by replacing P4’s
nonces 𝑥 and 𝑦 by Diffie-Hellman public keys 𝑔𝑥 and 𝑔𝑦 . A particularity of the PACE
protocol is the choice of the generator 𝑔, which is defined by

𝑔 = map(𝑠, 𝑝).

Here, 𝑠 is the nonce from P4 and 𝑝 is a public domain parameter that, together
with the mapping function map, ensures that 𝑔 is a suitable group generator. We
model map as a user-defined hash function, that is, without equational properties.
The parameter 𝑝 is added as an additional plaintext component to the first message.
Furthermore, the hashed Diffie-Hellman secret

Kir = h(𝑔𝑥𝑦).

now replaces the previous session key.

1. Transform your model of P4 into a model of the PACE protocol as described above
and establish the same properties as for P4 (modulo the replacement of nonces by
public keys) as the theory P5ab.

Hint: Use “let 𝑔 = map(𝑠, 𝑝)” in each protocol rule instead of storing 𝑔 in state
facts.

2. Strengthen the secrecy property of the session key Kir to perfect forward secrecy.
Add this property to the theory P5ab.

21.3 Solutions 315

3. Explain how the protocol relies on the secrecy of the base 𝑔 for the exponentiation.
Would it still work with a public base? Justify your answer.

4. Remove any tags that you may have in your protocol so that the last two messages
become unifiable. Find an attack on the secrecy or authentication property of the
resulting protocol and fix it by ensuring that 𝑔𝑥 and 𝑔𝑦 differ. (Having unifiable
messages in a protocol tends to make a protocol prone to attacks, but this is what
PACE does.) This check can be specified in Tamarin using a restriction. Specify
this as the theory P5d.

This concludes the PACE example.

21.3 Solutions

Here we give examples of solutions to selected exercises.

21.3.1 Client-Server Key Transmission - Solutions

Here are our solutions for the protocol presented in Section 21.1.1, following the
same subtask numbering. We provide a Tamarin file containing the full solution in
exercises/ClientServerSolution.spthy.

1. No further information, the model is commented.

2. As shown by lemma Client_session_key_secrecy, secrecy from the client’s
point of view holds.

The lemma Client_Server_can_finish is an executability sanity check.

3. The property fails: nothing ensures that the message does not come from the adver-
sary. To view this attack, take the solution file exercises/ClientServerSolution.spthy,
comment out the rule Reveal_ltk (as in the initial task file), and comment out the
line containing the LtkReveal in lemma Server_session_key_secrecy. Then
load the resulting theory and inspect the attack on that lemma using Tamarin’s
GUI.

4. Everything fails trivially. We must forbid LtkReveal for the concerned parties
(even for executability to have a real trace), after which we get the previous results
again. For this, we must modify all lemmas, which is already done in the solution
file. We provide one example here, for secrecy from the client’s point of view:

lemma Client_session_key_secrecy:
" All C S k #i.

(
/* If client ’C’ has set up a session key ’k’

316 21 Exercises

with a server ’S’ */
Claim_Secret(C, S, k) @ #i
/* and neither of the two communicating parties

are compromised */
& not (Ex #j. LtkReveal(C) @ #j) & not (Ex #j. LtkReveal(S) @ #j)

/* the adversary cannot know ’k’ */
==> not(Ex #j. K(k) @ #j)

) "

5. See exercises/ClientServerSolution.spthy for all the required changes.

6. Yes. This requires writing a lemma stating that if the client has finished, then the
server knows the key. See the Tamarin solution file from the previous subtask as
well.

21.3.2 Needham-Schroeder Protocol - Solutions

Here are our solutions for the protocol presented in Section 21.1.2, following the
same subtask numbering.

1. The sanity check and the typing lemma (i.e., the automatically generated sources
lemma) hold.

Secrecy fails, but Tamarin finds a more complicated variant of Lowe’s attack.
One can uncomment parts of the lemma in the provided source code to get a nicer
version.

2. Now all the properties hold, see exercises/needham-schroeder-lowe.spthy for the full
solution.

21.3.3 Aliveness and Agreement - Separating Examples - Solutions

Here are our solutions for the tasks from Section 21.1.3. Specifically, see the Tamarin
input files exercises/H1.spthy, exercises/H2.spthy, and exercises/H3.spthy, which implement
the three protocols. You can run Tamarin on them to examine the results yourself. In
short, this is what happens:

• H1. There is a reflection attack, so not even aliveness (or weak agreement if the
Initiator is annotated with running) holds, see Figure 21.4.

• H2. Non-injective agreement holds, but injectivity fails as there is no nonce or
timestamp, see Figure 21.5.

• H3. Injective agreement holds because of Ni.

21.3 Solutions 317

St_I_2($X, ~id, ~ltkX, pk(~ltkX), $X) In(sign(<$X, $X>, ~ltkX))

#i : I_2_receive[Receive($X, sign(<$X, $X>, ~ltkX)),
Commit($X, $X, <'Init', 'Resp'>),
Finish($X, $X)]

St_I_3($X, ~id, ~ltkX, pk(~ltkX), $X)

#vf : isend

#vk : coerce[!KU(sign(<$X, $X>, ~ltkX))]

St_I_1($X, ~id, ~ltkX, pk(~ltkX), $X)

#vr : I_1_send[Send($X, sign(<$X, $X>, ~ltkX)),
Running($X, $X, 'anyroles')]

St_I_2($X, ~id, ~ltkX, pk(~ltkX), $X) Out(sign(<$X, $X>, ~ltkX))

Fr(~id) !Ltk($X, ~ltkX) !Ltk($X, ~ltkX)

#vr.1 : Init_I[Create_I($X, ~id),
NotEq($X, $X)]

St_I_1($X, ~id, ~ltkX, pk(~ltkX), $X)

Fr(~ltkX)

#vr.2 : Register_pk[Register($X)]

!Ltk($X, ~ltkX) Out(pk(~ltkX))

Fr(~id.1) !Ltk($X, ~ltkX) !Ltk($X, ~ltkX)

#vr.4 : Init_I[Create_I($X, ~id.1),
NotEq($X, $X)]

St_I_1($X, ~id.1, ~ltkX, pk(~ltkX), $X)

St_I_1($X, ~id.1, ~ltkX, pk(~ltkX), $X)

#vr.3 : I_1_send[Send($X, sign(<$X, $X>, ~ltkX)),
Running($X, $X, 'anyroles')]

St_I_2($X, ~id.1, ~ltkX, pk(~ltkX), $X) Out(sign(<$X, $X>, ~ltkX))

Fig. 21.4: Attack trace showing the reflection attack.

318 21 Exercises

St_I_2($X, ~id, ~ltkX, pk(~ltkX.1), $X.1) In(sign($X, ~ltkX.1))

#i : I_2_receive[Receive($X, sign($X, ~ltkX.1)),
Commit($X, $X.1, <'Init', 'Resp'>),
Finish()]

St_I_3($X, ~id, ~ltkX, pk(~ltkX.1), $X.1)

St_I_2($X, ~id.1, ~ltkX, pk(~ltkX.1), $X.1) In(sign($X, ~ltkX.1))

#i2 : I_2_receive[Receive($X, sign($X, ~ltkX.1)),
Commit($X, $X.1, <'Init', 'Resp'>),
Finish()]

St_I_3($X, ~id.1, ~ltkX, pk(~ltkX.1), $X.1)

#vf : isend

#vk : coerce[!KU(sign($X, ~ltkX.1))]

#vf.6 : isend

St_I_1($X, ~id, ~ltkX, pk(~ltkX.1), $X.1)

#vr : I_1_send[Send($X, sign(<$X, $X.1>, ~ltkX)),
Running($X, $X.1, 'anyroles')]

St_I_2($X, ~id, ~ltkX, pk(~ltkX.1), $X.1) Out(sign(<$X, $X.1>, ~ltkX))

#vk.1 : coerce[!KU(sign(<$X, $X.1>, ~ltkX))]

#vf.4 : isend

Fr(~id) !Ltk($X, ~ltkX) !Ltk($X.1, ~ltkX.1)

#vr.1 : Init_I[Create_I($X, ~id)]

St_I_1($X, ~id, ~ltkX, pk(~ltkX.1), $X.1)

Fr(~ltkX)

#vr.2 : Register_pk[Register($X)]

!Ltk($X, ~ltkX) Out(pk(~ltkX))

Fr(~id.2) !Ltk($X.1, ~ltkX.1) !Ltk($X, ~ltkX)

#vr.6 : Init_R[Create_R($X.1, ~id.2)]

St_R_1($X.1, ~id.2, ~ltkX.1, pk(~ltkX), $X)

Fr(~id.1) !Ltk($X, ~ltkX) !Ltk($X.1, ~ltkX.1)

#vr.8 : Init_I[Create_I($X, ~id.1)]

St_I_1($X, ~id.1, ~ltkX, pk(~ltkX.1), $X.1)

Fr(~ltkX.1)

#vr.3 : Register_pk[Register($X.1)]

!Ltk($X.1, ~ltkX.1) Out(pk(~ltkX.1))

St_R_1($X.1, ~id.2, ~ltkX.1, pk(~ltkX), $X) In(sign(<$X, $X.1>, ~ltkX))

#vr.5 : R_1_receive[Recv($X.1, sign(<$X, $X.1>, ~ltkX))]

St_R_2($X.1, ~id.2, ~ltkX.1, pk(~ltkX), $X)

St_R_2($X.1, ~id.2, ~ltkX.1, pk(~ltkX), $X)

#vr.4 : R_2_send[Send($X.1, sign($X, ~ltkX.1)),
Running($X.1, $X, <'Init', 'Resp'>)]

St_R_3($X.1, ~id.2, ~ltkX.1, pk(~ltkX), $X) Out(sign($X, ~ltkX.1))

St_I_1($X, ~id.1, ~ltkX, pk(~ltkX.1), $X.1)

#vr.7 : I_1_send[Send($X, sign(<$X, $X.1>, ~ltkX)),
Running($X, $X.1, 'anyroles')]

St_I_2($X, ~id.1, ~ltkX, pk(~ltkX.1), $X.1) Out(sign(<$X, $X.1>, ~ltkX))

Fig. 21.5: Attack trace showing the violation of injectivity, i.e., a replay.

Index

∃, 55
∀, 55
+, 125
<, 55
⊏, 128
<<, 128
=, 34

message equality, 55
timepoint equality, 55

==>, 55
@, 55
[+], 250
[-], 250
#define, 162
#else, 162
#endif, 162
#ifdef, 162
$, 32
%+, 128
%1, 128
&, 55
_restrict, 74
~, 32
|, 55
ˆ, 125, 127
1:nat, 128
5G-AKA, 195, 271

1

in bilinear pairing theory, 127
in Diffie-Hellman theory, 125

abstract function, 32
AC, 125, 234
action fact, 53
actions, 53
adec, 123
adversary deduction

normal form conditions, 113
AEAD, 247
aenc, 123
agent

compromised, 63
honest, 63
malicious, 62
name, 12

agreement
injective, 69
non-injective, 68
weak, 68

aliveness, 68
All, 55
analyzing protocol families, 259
anonymity, 217
applied-Pi calculus, 7
arity of function symbol, 32
associative operators, 234
associative-commutative operators, 234

319

320 INDEX

associativity-commutativity, 125
asymmetric-encryption

built-in, 123
at timepoint, 55
authentic channel, 167
authenticated encryption with associated

data, 247
authentication property hierarchy, 66
auto-sources, 135
AUTO_IN_, 135
AUTO_OUT_, 135
AUTO_typing, 135

bad curve points, 244
bag, 35
bag built-in, 125
basic modeling, 151
before, 55
bi-system, 217
bilinear pairing built-in, 127
bilinear-pairing, 127
both lemma annotation, 218
branching, 50
branching in rules, 76
built-in, 121

Diffie-Hellman, 35
symmetric encryption, 34

builtins, 121

CEOgen, 238
certification, 8
channel

authentic, 167
confidential, 167
secure, 167

chosen-prefix collision, 247
chosen-suffix collision, 247
colliding signatures, 239
collision resistant, 247
color annotation for rules, 101
command-line mode, 83

workflow, 175
comment, 47

multi-line, 47
common workflows, 171

compromised agent, 63
conditional block, 162
confidential channel, 167
confluent rewrite system, 107
conjunction, 55
constant, 32, 153
constraint solving algorithm in Tamarin,

92
convergent equations, 107
counter, 127
cryptographic protocol, 3

deconstructions, 131
deconstructor, 155
deduction

normal form conditions, 113
define, 162
DEOgen, 238
dependency graph, 87

traces, 90
visualization, 101

deprio:, 251
design phase, 8
DH_neutral, 125, 127
diff, 217
diff mode, 217
Diffie-Hellman

equational theory, 35
simplified signed Diffie-Hellman pro-

tocol, 60
small subgroup element, 244

diffie-hellman
built-in, 125

diffLemma
Observational_equivalence, 218

disjunction, 55
does not exist error, 185
DSKS, 238

EBNF, 295
eCK security model, 165
elliptic curve, 244
else, 162
“else” branch in rules, 76
em, 127
embedded restriction, 74

INDEX 321

EMV, 273
endif, 162
equality

message variable, 55
term, 34
timepoint, 55

equation store, 109
equational theory, 7, 34, 107
equations

convergent, 107
on terms, 107
orienting, 107

error, 179
does not exist, 185
exit 126, 186
exit 127, 186
no such file or directory, 185,

186
permission denied, 186
readCreateProcess, 185, 186

EUF-CMA, 236, 241
Ex, 55
Exclusive Ownership, 238
exclusive-or built-in, 125
execs function, 41
executability, 169
executions

of global transition system, 40
exercises, 305
existential quantification, 55
existential unforgeability, 241
exit 126 error, 186
exit 127 error, 186
exp, 125, 127
explicit deconstructor, 155

F_ fact prefix, 249
fact, 19, 30, 35, 39

injective, 158
linear, 36
persistent, 36

fact label prefixes for heuristics, 249
Finite Variant Property, 109
Formal Methods, 5
formula

semantics of trace formula, 56
Fr fact, 36
Fr rule, 38
fr sort, 32
free term algebra, 34
fresh, 32

rule, 38
value, 32, 153
variable, 32

function
underspecified, 241

function symbol, 31, 32
injective, 34
irreducible, 55
private, 33
reducible, 55

FVP, 109

𝐺♯, 39
getMessage, 124
global macro, 161
global transition system, 29, 39
graphical user interface, 81

workflow, 171
gri , 39
ground term, 33
guarded lemma, 187
GUI, 81

workflow, 171

h, 122
hashing, 122
hashing built-in, 122
heuristic lemma annotation, 105, 253
heuristics, 104

fact label prefixes, 249
oracle scripts, 254
tactics, 251

hide_lemma annotation, 144
hierarchy of authentication properties, 66
Home Network, 196

Identifier (idHN), 196
public key (pkHN), 196

honest agent, 63
hyperproperties, 217

322 INDEX

idHN, 196
IETF TLS 1.3, 269
if-then-else in rules, 76
ifdef, 162
impact in practice, 269
implementations, 8
implication, 55
In, 36
indistinguishability, 8
induction, 141
injective agreement, 69
injective fact, 158
injective function symbol, 34
interactive mode, 81
inv, 125, 127
invalid curve points, 244
irreducible function symbol, 55
isFactName, 251
ISO-IEC four pass authentication proto-

col, 14

K, 36, 38
K vs KU vs KD, 194
KD, 36
key infrastructure, 45, 60
key substitution attacks, 238
KU, 36

L_ fact prefix, 249
labeled operational semantics, 40
language syntax, 295
last timepoint, 142
left lemma annotation, 218
lemma

semantics of trace formula, 56
sources, 135

lemma annotation, 141
both, 218
heuristic, 105, 253
hide_lemma, 144
induction, 141
left, 218
reuse, 144
right, 218
sources, 135

use_induction, 141
length extension attack, 246
let, 160
lfacts, 40
limit

number of saturation steps, 134
number of solved chain constraints, 134

limitations for equational theories, 233
linear fact, 36
local macro, 160
log, 30
loop, 49
loop breaker, 100

macro
global, 161
let, 160
local, 160
parameterized, 161

malicious agent, 62
malleability, 240
malleable signatures, 240
mangle, 240
memory exhaustion, 188
message, 30, 32, 33

deduction, 38
equality, 55
ground, 33

message substitution attacks, 238
mirror, 218
MIRRORED, 218
model checker, 5
model quality control, 169
modeling language, 7
modeling state machines, 43
msg sort, 32
multi-core CPU, 179
multi-line comment, 47
multiset, 35

multiset built-in, 125
rewriting, 7
rewriting rule, 30, 36

name of agent, 12
natural-numbers, 127

INDEX 323

natural-numbers built-in, 127
Naxos protocol, 165
negation, 55
network model, 38
no such file or directory error,

185, 186
no_precomp, 134
Noise protocol framework, 259
non-injective agreement, 68
non-interactive mode, 83
non-invertible, 34
non-prime order group, 244
nonce, 31
nonce-reuse attack, 248
normal form

adversary deduction, 113
term, 107

not, 55
number, 127
number used once, 31

observational equivalence, 7, 217
ONE

in bilinear pairing theory, 127
in Diffie-Hellman theory, 125

one-way, 34
OnlyOnce, 73
open chain, 136
--open-chains, 86
operational semantics, 40
oracle scripts, 254
order-sorted logic, 29
order-sorted term algebra, 31
orienting equations, 107
Out, 36

pairing, 33
parallelization, 179
parameterized macro, 161
partial deconstructions, 131
partner, see peer 63
pattern matching, 46, 47, 156
peer, see partner 63
permission denied error, 186
persistent fact, 36

pfacts, 40
pk, 123, 124
pkHN, 196
PKI, 60
pmult, 127
practical impact, 269
pre-computation, 131
pre-image resistant, 247
precomputations

exclude facts from precomputation,
134

predicate, 55, 72
presort:, 251
prime order group, 244
prio:, 251
privacy, 8
privacy properties, 217
private function symbol, 33
property specification, 7

K vs KU vs KD, 194
syntax, 54

protocol, 3
implementations, 8
protocol family analysis, 259
voting protocol, 220

pub sort, 32
public constant, 32
public key infrastructure, 45, 60
public variable, 32, 153

quote, 32

Random Oracle Model, 246
random value, 31
Raw sources, 135
re-signing, 239
readCreateProcess, 186
readCreateProcess error, 185, 186
recentness, 16
record, 30
reducible function symbol, 55
reducing proof-construction time, 249
Refined sources, 135
regex, 251
representing messages, 30

324 INDEX

ReSign, 239
restriction, 72

embedded, 74
reuse lemma annotation, 144
revealing-signing

built-in, 124
revealSign, 124
revealVerify, 124
rewriting rule, 36
right lemma annotation, 218
role, 12, 29
role annotation for rules, 103
ROM model, 246
RTS, 179
rule, 30

color annotation, 101
multiset rewriting rule, 19, 30, 36
role annotation, 103
transition system rule, 29

rule-equivalence, 218
running Tamarin, 81

safety property, 7
sanity checking models, 169
SAPIC, 7
scope of variable, 32, 152
sdec, 123
secrecy, 8
secure channel, 167
security protocol, 3
semantics

of Tamarin’s rules, 39
of trace formula, 56

senc, 123
Serving Network, 196
session, 49
set of traces of rule set, 41
sign, 124
signature

built-in, 124
colliding, 239
exclusive ownership, 238
malleable, 240
re-signing, 239
substitution attacks, 238

signing built-in, 124
single quote, 32
small subgroup, 244
smallest, 252
SNname, 196
sort, 31

fr, 32
msg, 32
pub, 32

sources, 131
raw, 135
refined, 135

sources lemma, 135
splitEqs, 109
standardization, 8
state machine, 14, 29

modeling, 43
static equivalence, 218
steps, 40
Subscriber, 196
Subscriber Concealed Identifier, 196
Subscriber Permanent Identifier, 196
substitution, 33
subterm-convergence, 231
subterm-convergent equational theory,

231
SUCI, 196
SUF-CMA, 236
SUPI, 196
symbolic model, 31
symmetric encryption

example, 34
symmetric encryption built-in, 123
symmetric-encryption, 123
syntax, 295

property specification, 54

tactic:, 251
tactics, 251
term, 30, 33

algebra, 31
equality, 34
ground, 33
rewriting, 29

terminating

INDEX 325

Tamarin search, 188
rewrite system, 107

theorem prover, 5
thread, 29, 44, 49

identifier, 30
threat model, 38, 62, 163
threat modeling, 163
timepoint

equality, 55
precedence, 55
variable, 55

TLS 1.3, 269
trace

of execution, 41
property, 53

traces and dependency graphs, 90
traces function, 41
transition, 39

relation, 7, 40
system, 7, 39

transition system rule, 29
true, 124
type annotation, 154

UE, 196
undecidability, 6
underspecified function, 241
universal quantification, 55
unlinkability, 217
use_induction, 141
User Equipment, 196
user-specified equational theory, 231

Vacarme, 263
variable, 32, 152

fresh, 32
public, 32
scope, 32, 152
timepoint, 55

variants, 108
verify, 124
visualization

of dependency graphs, 101
voter privacy, 217
voting protocol, 220

weak, 240
weak agreement, 68
web interface, 81
WireGuard, 8, 260
workflow, 171

command-line mode, 175
GUI, 171

xor, 125

zero, 125

	Part I Introduction and Motivation
	Introduction
	The setting
	Tamarin
	Application domain

	An Example
	A simplified version
	The real deal
	Summary

	Part II Modeling Foundations
	Modeling Foundations
	Multi-set rewriting
	Semantics of rules

	Modeling State Machines
	A simple challenge-response protocol
	Further concepts

	Specifying Trace Properties in Tamarin
	Syntax
	Semantics of trace formulas
	Secrecy on a toy example
	Authentication on the toy example
	Modeling a public key infrastructure
	Simplified Signed Diffie-Hellman Example
	Modeling malicious or compromised agents
	Flavors of secrecy
	A hierarchy of authentication properties
	Additional features for specifying properties

	Part III The Tamarin System
	A First Glimpse Under the Hood
	Running Tamarin
	How Tamarin works
	How dependency graphs relate to traces
	The constraint-solving algorithm
	Dependency graph visualizations
	Heuristics
	Handling equations
	Adversary deductions

	Built-in Equational Theories
	Syntactic built-ins
	Algorithmic built-ins

	Pre-computation and Deconstructions
	Pre-computations and sources
	Sources lemmas
	Auto-sources
	Using sources lemmas

	Lemma Annotations
	Induction
	Reuse and hiding
	An example: a simple hash chain

	Part IV Using Tamarin in Practice
	Basic Modeling
	Modeling with state facts
	Macros and conditional blocks
	Threat modeling
	Channel types
	How do I know my model makes sense?

	Common Workflows
	Tamarin's user interfaces
	Exists-trace lemmas
	Further workflows
	Error messages and solutions
	Guardedness of lemmas
	Termination and memory exhaustion
	Extensions and tools
	Common questions

	Case Study: 5G-AKA
	Overview of 5G-AKA
	Modeling 5G-AKA in Tamarin
	Conclusions and general insights

	Part V Advanced Topics
	Observational Equivalence
	Observational equivalence in Tamarin
	Modeling and analysis workflow
	A simple voting protocol

	User-Specified Equational Theories
	Subterm-convergent equational theories
	Beyond subterm-convergence
	Current limitations for equational theories

	Advanced Modeling of Primitives
	Digital signature schemes
	Other primitives

	Reducing Proof-Construction Time
	Changing priorities of facts using label prefixes
	Changing priorities using + and - modifiers
	Tactics
	Oracles

	Analyzing Protocol Families
	Noise Protocol Framework
	Analysis approach
	Example results for Noise

	Part VI Outlook
	Impact in Practice
	TLS 1.3
	5G-AKA
	EMV
	Summary

	References

	Part VII Appendix
	Dependency Graph Example
	Syntax
	Exercises
	Simple Protocols
	A Large Protocol: PACE
	Solutions

	Index

